25 research outputs found

    A model structure-driven hierarchical decentralized stabilizing control structure for process networks

    Get PDF
    Based on the structure of process models a hierarchically structured state-space model has been proposed for process networks with controlled mass convection and constant physico-chemical properties. Using the theory of cascade-connected nonlinear systems and the properties of Metzler and Hurwitz matrices it is shown that process systems with controlled mass convection and without sources or with stabilizing linear source terms are globally asymptotically stable. The hierarchically structured model gives rise to a distributed controller structure that is in agreement with the traditional hierarchical process control system structure where local controllers are used for mass inventory control and coordinating controllers are used for optimizing the system dynamics. The proposed distributed controller is illustrated on a simple non-isotherm jacketed chemical reactor

    Distributed Data-driven Predictive Control via Dissipative Behavior Synthesis

    Full text link
    This paper presents a distributed data-driven predictive control (DDPC) approach using the behavioral framework. It aims to design a network of controllers for an interconnected system with linear time-invariant (LTI) subsystems such that a given global (network-wide) cost function is minimized while desired control performance (e.g., network stability and disturbance rejection) is achieved using dissipativity in the quadratic difference form (QdF). By viewing dissipativity as a behavior and integrating it into the control design as a virtual dynamical system, the proposed approach carries out the entire design process in a unified framework with a set-theoretic viewpoint. This leads to an effective data-driven distributed control design, where the global design goal can be achieved by distributed optimization based on the local QdF conditions. The approach is illustrated by an example throughout the paper

    Distributed control of chemical process networks

    Full text link

    Integration of process design and control: A review

    Get PDF
    There is a large variety of methods in literature for process design and control, which can be classified into two main categories. The methods in the first category have a sequential approach in which, the control system is designed, only after the details of process design are decided. However, when process design is fixed, there is little room left for improving the control performance. Recognizing the interactions between process design and control, the methods in the second category integrate some control aspects into process design. With the aim of providing an exploration map and identifying the potential areas of further contributions, this paper presents a thematic review of the methods for integration of process design and control. The evolution paths of these methods are described and the advantages and disadvantages of each method are explained. The paper concludes with suggestions for future research activities

    Thermodynamic based response time as controllability indicator on heat exchanger networks

    Get PDF
    Nowadays, the interaction between process design and control has become the focus of research and development, because not always the best process design features the best dynamic performance, with implications in the controllability of the plant. The necessity in minimizing fixed investment and utilities consumption promotes integrated process design in energy and mass terms. These integrations are often designed without consideration of controllability and flexibility of these projects; creating difficulties in process control and resulting in more efficient designs with smaller gradients and reduced driving forces, which brings complications with disturbances rejection. Thermodynamics theory allows establishing relationships between physical quantities, giving an idea of how a system evolves in time. In this way, a thermodynamic analysis with a dissipative approach, can lead to an optimal point between process integration and controllability. The present paper proposes a simultaneous approach relating reversibility and control, obtaining a method to determine a thermodynamic index, relating the entropy and energy production in a new state function and establishing a response time index that serves as a guide to measure the process controllability. The method was applied to a known Heat Exchanger Network (HEN), resulting in smaller values for stages with high entropy production, when exposed to disturbance. The results were compared with the given by Relative Gain Array (RGA) and Disturbance Cost (DC) methods, showing consistency. With the proposed methodology, it is possible to relate the stages of process control and process design, with a base analysis of controllability based on the system thermodynamics.Papers presented to the 12th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Costa de Sol, Spain on 11-13 July 2016

    Limited-Communication Distributed Model Predictive Control for HVAC Systems

    Get PDF
    This dissertation proposes a Limited-Communication Distributed Model Predictive Control algorithm for networks with constrained discrete-time linear processes as local subsystems. The introduced algorithm has an iterative and cooperative framework with neighbor-to-neighbor communication structure. Convergence to a centralized solution is guaranteed by requiring coupled subsystems with local information to cooperate only. During an iteration, a local controller exchanges its predicted effects with local neighbors (which are treated as measured input disturbances in local dynamics) and receives the neighbor sensitivities for these effects at next iteration. Then the controller minimizes a local cost function that counts for the future effects to neighbors weighted by the received sensitivity information. Distributed observers are employed to estimate local states through local input-output signals. Closed-loop stability is proved for sufficiently long horizons. To reduce the computational loads associated with large horizons, local decisions are parametrized by Laguerre functions. A local agent can also reduce the communication burden by parametrizing the communicated data with Laguerre sequences. So far, convergence and closed-loop stability of the algorithm are proven under the assumptions of accessing all subsystem dynamics and cost functions information by a centralized monitor and sufficient number of iterations per sampling. However, these are not mild assumptions for many applications. To design a local convergence condition or a global condition that requires less information, tools from dissipativity theory are used. Although they are conservative conditions, the algorithm convergence can now be ensured either by requiring a distributed subsystem to show dissipativity in the local information dynamic inputs-outputs with gain less than unity or solving a global dissipative inequality with subsystem dissipativity gains and network topology only. Free variables are added to the local problems with the object of having freedom to design such convergence conditions. However, these new variables will result into a suboptimal algorithm that affects the proposed closed-loop stability. To ensure local MPC stability, therefore, a distributed synthesis, which considers the system interactions, of stabilizing terminal costs is introduced. Finally, to illustrate the aspects of the algorithm, coupled tank process and building HVAC system are used as application examples

    On Average Performance and Stability of Economic Model Predictive Control

    No full text
    corecore