129 research outputs found

    Nonlinear analysis of dynamical complex networks

    Get PDF
    Copyright © 2013 Zidong Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Complex networks are composed of a large number of highly interconnected dynamical units and therefore exhibit very complicated dynamics. Examples of such complex networks include the Internet, that is, a network of routers or domains, the World Wide Web (WWW), that is, a network of websites, the brain, that is, a network of neurons, and an organization, that is, a network of people. Since the introduction of the small-world network principle, a great deal of research has been focused on the dependence of the asymptotic behavior of interconnected oscillatory agents on the structural properties of complex networks. It has been found out that the general structure of the interaction network may play a crucial role in the emergence of synchronization phenomena in various fields such as physics, technology, and the life sciences

    Invariant Measures for Dissipative Dynamical Systems: Abstract Results and Applications

    Full text link
    In this work we study certain invariant measures that can be associated to the time averaged observation of a broad class of dissipative semigroups via the notion of a generalized Banach limit. Consider an arbitrary complete separable metric space XX which is acted on by any continuous semigroup {S(t)}t≥0\{S(t)\}_{t \geq 0}. Suppose that §(t)}t≥0\S(t)\}_{t \geq 0} possesses a global attractor A\mathcal{A}. We show that, for any generalized Banach limit LIMT→∞\underset{T \rightarrow \infty}{\rm{LIM}} and any distribution of initial conditions m0\mathfrak{m}_0, that there exists an invariant probability measure m\mathfrak{m}, whose support is contained in A\mathcal{A}, such that ∫Xϕ(x)dm(x)=LIMT→∞1T∫0T∫Xϕ(S(t)x)dm0(x)dt, \int_{X} \phi(x) d\mathfrak{m} (x) = \underset{T\to \infty}{\rm{LIM}} \frac{1}{T}\int_0^T \int_X \phi(S(t) x) d \mathfrak{m}_0(x) d t, for all observables ϕ\phi living in a suitable function space of continuous mappings on XX. This work is based on a functional analytic framework simplifying and generalizing previous works in this direction. In particular our results rely on the novel use of a general but elementary topological observation, valid in any metric space, which concerns the growth of continuous functions in the neighborhood of compact sets. In the case when {S(t)}t≥0\{S(t)\}_{t \geq 0} does not possess a compact absorbing set, this lemma allows us to sidestep the use of weak compactness arguments which require the imposition of cumbersome weak continuity conditions and limits the phase space XX to the case of a reflexive Banach space. Two examples of concrete dynamical systems where the semigroup is known to be non-compact are examined in detail.Comment: To appear in Communications in Mathematical Physic

    An analysis of solutions to fractional neutral differential equations with delay

    Get PDF
    This paper discusses some properties of solutions to fractional neutral delay differential equations. By combining a new weighted norm, the Banach fixed point theorem and an elegant technique for extending solutions, results on existence, uniqueness, and growth rate of global solutions under a mild Lipschitz continuous condition of the vector field are first established. Be means of the Laplace transform the solution of some delay fractional neutral differential equations are derived in terms of three-parameter Mittag–Leffler functions; their stability properties are hence studied by using use Rouché’s theorem to describe the position of poles of the characteristic polynomials and the final value theorem to detect the asymptotic behavior. By means of numerical simulations the theoretical findings on the asymptotic behavior are verified

    Stability Analysis for Time-Varying Systems with Delay using Linear Lyapunov Functionals and a Positive Systems Approach

    Get PDF
    International audienceWe prove stability of time-varying systems with delays, using linear Lyapunov functionals and positive systems, and we provide robustness of the stability with respect to multiplicative uncertainty in the vector fields. We allow cases where the delay may be unknown, and where the vector fields defining the systems are not necessarily bounded. We illustrate our work using a chain of integrators and other examples

    pth moment exponential stability of stochastic fuzzy Cohen–Grossberg neural networks with discrete and distributed delays

    Get PDF
    In this paper, stochastic fuzzy Cohen–Grossberg neural networks with discrete and distributed delays are investigated. By using Lyapunov function and the Ito differential formula, some sufficient conditions for the pth moment exponential stability of such stochastic fuzzy Cohen–Grossberg neural networks with discrete and distributed delays are established. An example is given to illustrate the feasibility of our main theoretical findings. Finally, the paper ends with a brief conclusion. Methodology and achieved results is to be presented

    Detectability Conditions and State Estimation for Linear Time-Varying and Nonlinear Systems

    Full text link
    This work proposes a detectability condition for linear time-varying systems based on the exponential dichotomy spectrum. The condition guarantees the existence of an observer, whose gain is determined only by the unstable modes of the system. This allows for an observer design with low computational complexity compared to classical estimation approaches. An extension of this observer design to a class of nonlinear systems is proposed and local convergence of the corresponding estimation error dynamics is proven. Numerical results show the efficacy of the proposed observer design technique
    • …
    corecore