978 research outputs found

    Incremental Dissipativity based Control of Discrete-Time Nonlinear Systems via the LPV Framework

    Get PDF
    Unlike for Linear Time-Invariant (LTI) systems, for nonlinear systems, there exists no general framework for systematic convex controller design which incorporates performance shaping. The Linear Parameter-Varying (LPV) framework sought to bridge this gap by extending convex LTI synthesis results such that they could be applied to nonlinear systems. However, recent literature has shown that naive application of the LPV framework can fail to guarantee the desired asymptotic stability guarantees for nonlinear systems. Incremental dissipativity theory has been successfully used in the literature to overcome these issues for Continuous-Time (CT) systems. However, so far no solution has been proposed for output-feedback based incremental control for the Discrete-Time (DT) case. Using recent results on convex analysis of incremental dissipativity for DT nonlinear systems, in this paper, we propose a convex output-feedback controller synthesis method to ensure closed-loop incremental dissipativity of DT nonlinear systems via the LPV framework. The proposed method is applied on a simulation example, demonstrating improved stability and performance properties compared to a standard LPV controller design.Comment: Accepted to 60th Conference on Decision and Control, Austin, 202

    Robust and Resilient State Dependent Control of Discrete-Time Nonlinear Systems with General Performance Criteria

    Get PDF
    A novel state dependent control approach for discrete-time nonlinear systems with general performance criteria is presented. This controller is robust for unstructured model uncertainties, resilient against bounded feedback control gain perturbations in achieving optimality for general performance criteria to secure quadratic optimality with inherent asymptotic stability property together with quadratic dissipative type of disturbance reduction. For the system model, unstructured uncertainty description is assumed, which incorporates commonly used types of uncertainties, such as norm-bounded and positive real uncertainties as special cases. By solving a state dependent linear matrix inequality at each time step, sufficient condition for the control solution can be found which satisfies the general performance criteria. The results of this paper unify existing results on nonlinear quadratic regulator, H∞ and positive real control to provide a novel robust control design. The effectiveness of the proposed technique is demonstrated by simulation of the control of inverted pendulum

    Minimality properties of set-valued processes and their pullback attractors

    Full text link
    We discuss the existence of pullback attractors for multivalued dynamical systems on metric spaces. Such attractors are shown to exist without any assumptions in terms of continuity of the solution maps, based only on minimality properties with respect to the notion of pullback attraction. When invariance is required, a very weak closed graph condition on the solving operators is assumed. The presentation is complemented with examples and counterexamples to test the sharpness of the hypotheses involved, including a reaction-diffusion equation, a discontinuous ordinary differential equation and an irregular form of the heat equation.Comment: 33 pages. A few typos correcte

    Passivity Degradation In Discrete Control Implementations: An Approximate Bisimulation Approach

    Full text link
    In this paper, we present some preliminary results for compositional analysis of heterogeneous systems containing both discrete state models and continuous systems using consistent notions of dissipativity and passivity. We study the following problem: given a physical plant model and a continuous feedback controller designed using traditional control techniques, how is the closed-loop passivity affected when the continuous controller is replaced by a discrete (i.e., symbolic) implementation within this framework? Specifically, we give quantitative results on performance degradation when the discrete control implementation is approximately bisimilar to the continuous controller, and based on them, we provide conditions that guarantee the boundedness property of the closed-loop system.Comment: This is an extended version of our IEEE CDC 2015 paper to appear in Japa

    Robust and Resilient State-dependent Control of Continuous-time Nonlinear Systems with General Performance Criteria

    Get PDF
    A novel state-dependent control approach for continuous-time nonlinear systems with general performance criteria is presented in this paper. This controller is optimally robust for model uncertainties and resilient against control feedback gain perturbations in achieving general performance criteria to secure quadratic optimality with inherent asymptotic stability property together with quadratic dissipative type of disturbance reduction. For the system model, unstructured uncertainty description is assumed, which incorporates commonly used types of uncertainties, such as norm-bounded and positive real uncertainties as special cases. By solving a state-dependent linear matrix inequality at each time, sufficient condition for the control solution can be found which satisfies the general performance criteria. The results of this paper unify existing results on nonlinear quadratic regulator, H∞ and positive real control. The efficacy of the proposed technique is demonstrated by numerical simulations of the nonlinear control of the inverted pendulum on a cart system
    • …
    corecore