112 research outputs found

    Extremal properties for dissections of convex 3-polytopes

    Get PDF
    A dissection of a convex d-polytope is a partition of the polytope into d-simplices whose vertices are among the vertices of the polytope. Triangulations are dissections that have the additional property that the set of all its simplices forms a simplicial complex. The size of a dissection is the number of d-simplices it contains. This paper compares triangulations of maximal size with dissections of maximal size. We also exhibit lower and upper bounds for the size of dissections of a 3-polytope and analyze extremal size triangulations for specific non-simplicial polytopes: prisms, antiprisms, Archimedean solids, and combinatorial d-cubes.Comment: 19 page

    Asymptotically efficient triangulations of the d-cube

    Full text link
    Let PP and QQ be polytopes, the first of "low" dimension and the second of "high" dimension. We show how to triangulate the product P×QP \times Q efficiently (i.e., with few simplices) starting with a given triangulation of QQ. Our method has a computational part, where we need to compute an efficient triangulation of P×ΔmP \times \Delta^m, for a (small) natural number mm of our choice. Δm\Delta^m denotes the mm-simplex. Our procedure can be applied to obtain (asymptotically) efficient triangulations of the cube InI^n: We decompose In=Ik×InkI^n = I^k \times I^{n-k}, for a small kk. Then we recursively assume we have obtained an efficient triangulation of the second factor and use our method to triangulate the product. The outcome is that using k=3k=3 and m=2m=2, we can triangulate InI^n with O(0.816nn!)O(0.816^{n} n!) simplices, instead of the O(0.840nn!)O(0.840^{n} n!) achievable before.Comment: 19 pages, 6 figures. Only minor changes from previous versions, some suggested by anonymous referees. Paper accepted in "Discrete and Computational Geometry

    Hypergraph polynomials and the Bernardi process

    Get PDF
    Recently O. Bernardi gave a formula for the Tutte polynomial T(x,y)T(x,y) of a graph, based on spanning trees and activities just like the original definition, but using a fixed ribbon structure to order the set of edges in a different way for each tree. The interior polynomial II is a generalization of T(x,1)T(x,1) to hypergraphs. We supply a Bernardi-type description of II using a ribbon structure on the underlying bipartite graph GG. Our formula works because it is determined by the Ehrhart polynomial of the root polytope of GG in the same way as II is. To prove this we interpret the Bernardi process as a way of dissecting the root polytope into simplices, along with a shelling order. We also show that our generalized Bernardi process gives a common extension of bijections (and their inverses) constructed by Baker and Wang between spanning trees and break divisors.Comment: 46 page

    Survey of two-dimensional acute triangulations

    Get PDF
    AbstractWe give a brief introduction to the topic of two-dimensional acute triangulations, mention results on related areas, survey existing achievements–with emphasis on recent activity–and list related open problems, both concrete and conceptual
    corecore