9,340 research outputs found

    Cell-type specific analysis of translating RNAs in developing flowers reveals new levels of control

    Get PDF
    Determining both the expression levels of mRNA and the regulation of its translation is important in understanding specialized cell functions. In this study, we describe both the expression profiles of cells within spatiotemporal domains of the Arabidopsis thaliana flower and the post-transcriptional regulation of these mRNAs, at nucleotide resolution. We express a tagged ribosomal protein under the promoters of three master regulators of flower development. By precipitating tagged polysomes, we isolated cell type specific mRNAs that are probably translating, and quantified those mRNAs through deep sequencing. Cell type comparisons identified known cell-specific transcripts and uncovered many new ones, from which we inferred cell type-specific hormone responses, promoter motifs and coexpressed cognate binding factor candidates, and splicing isoforms. By comparing translating mRNAs with steady-state overall transcripts, we found evidence for widespread post-transcriptional regulation at both the intron splicing and translational stages. Sequence analyses identified structural features associated with each step. Finally, we identified a new class of noncoding RNAs associated with polysomes. Findings from our profiling lead to new hypotheses in the understanding of flower development

    Mechanical and Systems Biology of Cancer

    Get PDF
    Mechanics and biochemical signaling are both often deregulated in cancer, leading to cancer cell phenotypes that exhibit increased invasiveness, proliferation, and survival. The dynamics and interactions of cytoskeletal components control basic mechanical properties, such as cell tension, stiffness, and engagement with the extracellular environment, which can lead to extracellular matrix remodeling. Intracellular mechanics can alter signaling and transcription factors, impacting cell decision making. Additionally, signaling from soluble and mechanical factors in the extracellular environment, such as substrate stiffness and ligand density, can modulate cytoskeletal dynamics. Computational models closely integrated with experimental support, incorporating cancer-specific parameters, can provide quantitative assessments and serve as predictive tools toward dissecting the feedback between signaling and mechanics and across multiple scales and domains in tumor progression.Comment: 18 pages, 3 figure

    Molecular mechanisms of neurogenic aging in the adult mouse subventricular zone

    Get PDF
    In the adult rodent brain, the continuous production of new neurons by neural stem/progenitor cells (NSPCs) residing in specialized neurogenic niches and their subsequent integration into pre-existing cerebral circuitries supports odour discrimination, spatial learning, and contextual memory capabilities. Aging is recognized as the most potent negative regulator of adult neurogenesis. The neurogenic process markedly declines in the aged brain, due to the reduction of the NSPC pool and the functional impairment of the remaining NSPCs. This decline has been linked to the progressive cognitive deficits of elderly individuals and it may also be involved in the onset/progression of neurological disorders. Since the human lifespan has been dramatically extended, the incidence of age-associated neuropsychiatric conditions in the human population has increased. This has prompted efforts to shed light on the mechanisms underpinning the age-related decline of adult neurogenesis, whose knowledge may foster therapeutic approaches to prevent or delay cognitive alterations in elderly patients. In this review, we summarize recent progress in elucidating the molecular causes of neurogenic aging in the most abundant NSPC niche of the adult mouse brain: the subventricular zone (SVZ). We discuss the age-associated changes occurring both in the intrinsic NSPC molecular networks and in the extrinsic signalling pathways acting in the complex environment of the SVZ niche, and how all these changes may steer young NSPCs towards an aged phenotype

    Adaptive mechanisms controlling uterine spiral artery remodeling during the establishment of pregnancy

    Get PDF
    Implantation of the embryo into the uterus triggers the initiation of hemochorial placentation. The hemochorial placenta facilitates the acquisition of maternal resources required for embryo/fetal growth. Uterine spiral arteries form the nutrient supply line for the placenta and fetus. This vascular conduit undergoes gestation stage-specific remodeling directed by maternal natural killer cells and embryo-derived invasive trophoblast lineages. The placentation site, including remodeling of the uterine spiral arteries, is shaped by environmental challenges. In this review, we discuss the cellular participants controlling pregnancy-dependent uterine spiral artery remodeling and mechanisms responsible for their development and function. © 2014 UBC Press
    corecore