636 research outputs found

    Multi-Scale Simulation of Complex Systems: A Perspective of Integrating Knowledge and Data

    Full text link
    Complex system simulation has been playing an irreplaceable role in understanding, predicting, and controlling diverse complex systems. In the past few decades, the multi-scale simulation technique has drawn increasing attention for its remarkable ability to overcome the challenges of complex system simulation with unknown mechanisms and expensive computational costs. In this survey, we will systematically review the literature on multi-scale simulation of complex systems from the perspective of knowledge and data. Firstly, we will present background knowledge about simulating complex system simulation and the scales in complex systems. Then, we divide the main objectives of multi-scale modeling and simulation into five categories by considering scenarios with clear scale and scenarios with unclear scale, respectively. After summarizing the general methods for multi-scale simulation based on the clues of knowledge and data, we introduce the adopted methods to achieve different objectives. Finally, we introduce the applications of multi-scale simulation in typical matter systems and social systems

    Multi-scale molecular descriptions of human heart failure using single cell, spatial, and bulk transcriptomics

    Get PDF
    Molecular descriptions of human disease have relied on transcriptomics, the genome-wide measurement of gene expression. In the last years the emergence of capture-based technologies have enabled the transcriptomic profiling of single cells both from dissociated and intact tissues, providing a spatial and cell type specific context that complements the catalog of gene expression changes reported from bulk technologies. In the context of cardiovascular disease, these technologies open the opportunity to study the inter and intra-cellular mechanisms that regulate myocardial remodeling. In this thesis I present comprehensive descriptions of the transcriptional changes in acute and chronic human heart failure using bulk, single cell, and spatial technologies. First, I describe the creation of the Reference of the Heart Failure Transcriptome, a resource built from the meta-analysis of 16 independent studies of human heart failure transcriptomics. Then, I report the first spatial and single cell atlas of human myocardial infarction, and propose a computational strategy to identify compositional, organizational, and molecular tissue differences across distinct time points and physiological zones of damaged myocardium. Finally, I outline a methodology for the multicellular analysis of single cell data that allows for a better understanding of tissue responses and cell type coordination events in cardiovascular disease and that links the knowledge of independent studies at multiple scales. Overall my work demonstrates the importance of the generation of reliable molecular references of disease across scales

    Forum on immune digital twins: a meeting report

    Full text link
    Medical digital twins are computational models of human biology relevant to a given medical condition, which can be tailored to an individual patient, thereby predicting the course of disease and individualized treatments, an important goal of personalized medicine. The immune system, which has a central role in many diseases, is highly heterogeneous between individuals, and thus poses a major challenge for this technology. If medical digital twins are to faithfully capture the characteristics of a patient's immune system, we need to answer many questions, such as: What do we need to know about the immune system to build mathematical models that reflect features of an individual? What data do we need to collect across the different scales of immune system action? What are the right modeling paradigms to properly capture immune system complexity? In February 2023, an international group of experts convened in Lake Nona, FL for two days to discuss these and other questions related to digital twins of the immune system. The group consisted of clinicians, immunologists, biologists, and mathematical modelers, representative of the interdisciplinary nature of medical digital twin development. A video recording of the entire event is available. This paper presents a synopsis of the discussions, brief descriptions of ongoing digital twin projects at different stages of progress. It also proposes a 5-year action plan for further developing this technology. The main recommendations are to identify and pursue a small number of promising use cases, to develop stimulation-specific assays of immune function in a clinical setting, and to develop a database of existing computational immune models, as well as advanced modeling technology and infrastructure

    Modeling The Spatiotemporal Dynamics Of Cells In The Lung

    Get PDF
    Multiple research problems related to the lung involve a need to take into account the spatiotemporal dynamics of the underlying component cells. Two such problems involve better understanding the nature of the allergic inflammatory response to explore what might cause chronic inflammatory diseases such as asthma, and determining the rules underlying stem cells used to engraft decellularized lung scaffolds in the hopes of growing new lungs for transplantation. For both problems, we model the systems computationally using agent-based modeling, a tool that enables us to capture these spatiotemporal dynamics by modeling any biological system as a collection of agents (cells) interacting with each other and within their environment. This allows to test the most important pieces of biological systems together rather than in isolation, and thus rapidly derive biological insights from resulting complex behavior that could not have been predicted beforehand, which we can then use to guide wet lab experimentation. For the allergic response, we hypothesized that stimulation of the allergic response with antigen results in a response with formal similarity to a muscle twitch or an action potential, with an inflammatory phase followed by a resolution phase that returns the system to baseline. We prepared an agent-based model (ABM) of the allergic inflammatory response and determined that antigen stimulation indeed results in a twitch-like response. To determine what might cause chronic inflammatory diseases where the twitch presumably cannot resolve back to baseline, we then tested multiple potential defects to the model. We observed that while most of these potential changes lessen the magnitude of the response but do not affect its overall behavior, extending the lifespan of activated pro-inflammatory cells such as neutrophils and eosinophil results in a prolonged inflammatory response that does not resolve to baseline. Finally, we performed a series of experiments involving continual antigen stimulation in mice, determining that there is evidence in the cytokine, cellular and physiologic (mechanical) response consistent with our hypothesis of a finite twitch and an associated refractory period. For stem cells, we made a 3-D ABM of a decellularized scaffold section seeded with a generic stem cell type. We then programmed in different sets of rules that could conceivably underlie the cell\u27s behavior, and observed the change in engraftment patterns in the scaffold over selected timepoints. We compared the change in those patterns against the change in experimental scaffold images seeded with C10 epithelial cells and mesenchymal stem cells, two cell types whose behaviors are not well understood, in order to determine which rulesets more closely match each cell type. Our model indicates that C10s are more likely to survive on regions of higher substrate while MSCs are more likely to proliferate on regions of higher substrate

    LifeTime and improving European healthcare through cell-based interceptive medicine

    Full text link
    Here we describe the LifeTime Initiative, which aims to track, understand and target human cells during the onset and progression of complex diseases, and to analyse their response to therapy at single-cell resolution. This mission will be implemented through the development, integration and application of single-cell multi-omics and imaging, artificial intelligence and patient-derived experimental disease models during the progression from health to disease. The analysis of large molecular and clinical datasets will identify molecular mechanisms, create predictive computational models of disease progression, and reveal new drug targets and therapies. The timely detection and interception of disease embedded in an ethical and patient-centred vision will be achieved through interactions across academia, hospitals, patient associations, health data management systems and industry. The application of this strategy to key medical challenges in cancer, neurological and neuropsychiatric disorders, and infectious, chronic inflammatory and cardiovascular diseases at the single-cell level will usher in cell-based interceptive medicine in Europe over the next decade

    French Roadmap for complex Systems 2008-2009

    Get PDF
    This second issue of the French Complex Systems Roadmap is the outcome of the Entretiens de Cargese 2008, an interdisciplinary brainstorming session organized over one week in 2008, jointly by RNSC, ISC-PIF and IXXI. It capitalizes on the first roadmap and gathers contributions of more than 70 scientists from major French institutions. The aim of this roadmap is to foster the coordination of the complex systems community on focused topics and questions, as well as to present contributions and challenges in the complex systems sciences and complexity science to the public, political and industrial spheres

    An immersed peridynamics model of fluid-structure interaction accounting for material damage and failure

    Full text link
    This paper develops and benchmarks an immersed peridynamics method to simulate the deformation, damage, and failure of hyperelastic materials within a fluid-structure interaction framework. The immersed peridynamics method describes an incompressible structure immersed in a viscous incompressible fluid. It expresses the momentum equation and incompressibility constraint in Eulerian form, and it describes the structural motion and resultant forces in Lagrangian form. Coupling between Eulerian and Lagrangian variables is achieved by integral transforms with Dirac delta function kernels, as in standard immersed boundary methods. The major difference between our approach and conventional immersed boundary methods is that we use peridynamics, instead of classical continuum mechanics, to determine the structural forces. We focus on non-ordinary state-based peridynamic material descriptions that allow us to use a constitutive correspondence framework that can leverage well characterized nonlinear constitutive models of soft materials. The convergence and accuracy of our approach are compared to both conventional and immersed finite element methods using widely used benchmark problems of nonlinear incompressible elasticity. We demonstrate that the immersed peridynamics method yields comparable accuracy with similar numbers of structural degrees of freedom for several choices of the size of the peridynamic horizon. We also demonstrate that the method can generate grid-converged simulations of fluid-driven material damage growth, crack formation and propagation, and rupture under large deformations
    • …
    corecore