28 research outputs found

    Bar 1-Visibility Graphs and their relation to other Nearly Planar Graphs

    Full text link
    A graph is called a strong (resp. weak) bar 1-visibility graph if its vertices can be represented as horizontal segments (bars) in the plane so that its edges are all (resp. a subset of) the pairs of vertices whose bars have a ϵ\epsilon-thick vertical line connecting them that intersects at most one other bar. We explore the relation among weak (resp. strong) bar 1-visibility graphs and other nearly planar graph classes. In particular, we study their relation to 1-planar graphs, which have a drawing with at most one crossing per edge; quasi-planar graphs, which have a drawing with no three mutually crossing edges; the squares of planar 1-flow networks, which are upward digraphs with in- or out-degree at most one. Our main results are that 1-planar graphs and the (undirected) squares of planar 1-flow networks are weak bar 1-visibility graphs and that these are quasi-planar graphs

    Intersection Graphs of L-Shapes and Segments in the Plane

    Get PDF
    An L-shape is the union of a horizontal and a vertical segment with a common endpoint. These come in four rotations: ⌊,⌈,⌋ and ⌉. A k-bend path is a simple path in the plane, whose direction changes k times from horizontal to vertical. If a graph admits an intersection representation in which every vertex is represented by an ⌊, an ⌊ or ⌈, a k-bend path, or a segment, then this graph is called an ⌊-graph, ⌊,⌈-graph, B k -VPG-graph or SEG-graph, respectively. Motivated by a theorem of Middendorf and Pfeiffer [Discrete Mathematics, 108(1):365–372, 1992], stating that every ⌊,⌈-graph is a SEG-graph, we investigate several known subclasses of SEG-graphs and show that they are ⌊-graphs, or B k -VPG-graphs for some small constant k. We show that all planar 3-trees, all line graphs of planar graphs, and all full subdivisions of planar graphs are ⌊-graphs. Furthermore we show that all complements of planar graphs are B 19-VPG-graphs and all complements of full subdivisions are B 2-VPG-graphs. Here a full subdivision is a graph in which each edge is subdivided at least once

    Proper Coloring of Geometric Hypergraphs

    Get PDF
    We study whether for a given planar family F there is an m such that any finite set of points can be 3-colored so that anymember ofF that contains at leastm points contains two points with different colors. We conjecture that if F is a family of pseudo-disks, then such an m exists. We prove this in the special case when F is the family of all homothetic copies of a given convex polygon. We also study the problem in higher dimensions

    Chasing Puppies: Mobile Beacon Routing on Closed Curves

    Get PDF
    We solve an open problem posed by Michael Biro at CCCG 2013 that was inspired by his and others' work on beacon-based routing. Consider a human and a puppy on a simple closed curve in the plane. The human can walk along the curve at bounded speed and change direction as desired. The puppy runs with unbounded speed along the curve as long as the Euclidean straight-line distance to the human is decreasing, so that it is always at a point on the curve where the distance is locally minimal. Assuming that the curve is smooth (with some mild genericity constraints) or a simple polygon, we prove that the human can always catch the puppy in finite time.Comment: Full version of a SOCG 2021 paper, 28 pages, 27 figure

    Seventh Biennial Report : June 2003 - March 2005

    No full text

    LIPIcs, Volume 244, ESA 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 244, ESA 2022, Complete Volum
    corecore