58 research outputs found

    Gráfszínezések és gráfok felbontásai = Colorings and decompositions of graphs

    Get PDF
    A nem-ismétlő színezéseket a véletlen módszer alkalmazhatósága miatt kezdték el vizsgálni. Felső korlátot adtunk a színek számára, amely a maximum fok és a favastagság lineáris függvénye. Olyan színezéseket is vizsgáltunk, amelyek egy síkgráf oldalain nem-ismétlők. Sejtés volt, hogy véges sok szín elég. Ezt bizonyítottuk 24 színnel. A kromatikus számot és a metszési számot algoritmikusan nehéz meghatározni. Ezért meglepő Albertson egy friss sejtése, amely kapcsolatot állít fel közöttük: ha egy gráf kromatikus száma r, akkor metszési száma legalább annyi, mint a teljes r csúcsú gráfé. Bizonyítottuk a sejtést, ha r<3.57n, valamint ha 12<r<17. Ez utóbbi azért érdekes, mert a teljes r csúcsú gráf metszési száma csak r<13 esetén ismert. A témakör legfontosabb nyitott kérdése a Hadwiger-sejtés, mely szerint minden r-kromatikus gráf tartalmazza a teljes r csúcsú gráfot minorként. Ennek általánosításaként fogalmazták meg a lista színezési Hadwiger sejtést: ha egy gráf nem tartalmaz teljes r csúcsú gráfot minorként, akkor az r-lista színezhető. Megmutattuk, hogy ez a sejtés hamis. Legalább cr színre szükségünk van bizonyos gráfokra, ahol c=4/3. Thomassennel vetettük fel azt a kérdést, hogy milyen feltétel garantálja, hogy G élei felbonthatók egy adott T fa példányaira. Legyen Y az a fa, melynek fokszámsorozata (1,1,1,2,3). Megmutattuk, hogy minden 287-szeresen élösszefüggő fa felbomlik Y-okra, ha az élszám osztható 4-gyel. | Nonrepetitive colorings often use the probabilistic method. We gave an upper bound as a linear function of the maximum degree and the tree-width. We also investigated colorings, which are nonrepetitive on faces of plane graphs. As conjectured, a finite number of colors suffice. We proved it by 24 colors. The chromatic and crossing numbers are both difficult to compute. The recent Albertson's conjecture is a surprising relation between the two: if the chromatic number is r, then the crossing number is at least the crossing number of the complete graph on r vertices. We proved this claim, if r<3.57n, or 12<r<17. The latter is remarkable, since the crossing number of the complete graph is only known for r<13. The most important open question of the field is Hadwiger's conjecture: every r-chromatic graph contains as a minor the complete graph on r vertices. As a generalisation, the following is the list coloring Hadwiger conjecture: if a graph does not contain as a minor the complete graph on r vertices , then the graph is r-list colorable. We proved the falsity of this claim. In our examples, at least cr colors are necessary, where c=4/3. Decomposition of graphs is well-studied. Thomassen and I posed the question of a sufficient connectivity condition, which guaranties a T-decomposition. Let Y be the tree with degree sequence (1,1,1,2,3). We proved every 287-edge connected graph has a Y-decomposition, if the size is divisible by four

    Forbidden Configurations: Finding the number predicted by the Anstee-Sali Conjecture is NP-hard

    Full text link
    Let F be a hypergraph and let forb(m,F) denote the maximum number of edges a hypergraph with m vertices can have if it doesn't contain F as a subhypergraph. A conjecture of Anstee and Sali predicts the asymptotic behaviour of forb(m,F) for fixed F. In this paper we prove that even finding this predicted asymptotic behaviour is an NP-hard problem, meaning that if the Anstee-Sali conjecture were true, finding the asymptotics of forb(m,F) would be NP-hard

    The smallest 5-chromatic tournament

    Full text link
    A coloring of a digraph is a partition of its vertex set such that each class induces a digraph with no directed cycles. A digraph is kk-chromatic if kk is the minimum number of classes in such partition, and a digraph is oriented if there is at most one arc between each pair of vertices. Clearly, the smallest kk-chromatic digraph is the complete digraph on kk vertices, but determining the order of the smallest kk-chromatic oriented graphs is a challenging problem. It is known that the smallest 22-, 33- and 44-chromatic oriented graphs have 33, 77 and 1111 vertices, respectively. In 1994, Neumann-Lara conjectured that a smallest 55-chromatic oriented graph has 1717 vertices. We solve this conjecture and show that the correct order is 1919
    • …
    corecore