248 research outputs found

    TOBE: Tangible Out-of-Body Experience

    Get PDF
    We propose a toolkit for creating Tangible Out-of-Body Experiences: exposing the inner states of users using physiological signals such as heart rate or brain activity. Tobe can take the form of a tangible avatar displaying live physiological readings to reflect on ourselves and others. Such a toolkit could be used by researchers and designers to create a multitude of potential tangible applications, including (but not limited to) educational tools about Science Technologies Engineering and Mathematics (STEM) and cognitive science, medical applications or entertainment and social experiences with one or several users or Tobes involved. Through a co-design approach, we investigated how everyday people picture their physiology and we validated the acceptability of Tobe in a scientific museum. We also give a practical example where two users relax together, with insights on how Tobe helped them to synchronize their signals and share a moment

    Resonating Experiences of Self and Others enabled by a Tangible Somaesthetic Design

    Get PDF
    Digitalization is penetrating every aspect of everyday life including a human's heart beating, which can easily be sensed by wearable sensors and displayed for others to see, feel, and potentially "bodily resonate" with. Previous work in studying human interactions and interaction designs with physiological data, such as a heart's pulse rate, have argued that feeding it back to the users may, for example support users' mindfulness and self-awareness during various everyday activities and ultimately support their wellbeing. Inspired by Somaesthetics as a discipline, which focuses on an appreciation of the living body's role in all our experiences, we designed and explored mobile tangible heart beat displays, which enable rich forms of bodily experiencing oneself and others in social proximity. In this paper, we first report on the design process of tangible heart displays and then present results of a field study with 30 pairs of participants. Participants were asked to use the tangible heart displays during watching movies together and report their experience in three different heart display conditions (i.e., displaying their own heart beat, their partner's heart beat, and watching a movie without a heart display). We found, for example that participants reported significant effects in experiencing sensory immersion when they felt their own heart beats compared to the condition without any heart beat display, and that feeling their partner's heart beats resulted in significant effects on social experience. We refer to resonance theory to discuss the results, highlighting the potential of how ubiquitous technology could utilize physiological data to provide resonance in a modern society facing social acceleration.Comment: 18 page

    Brotate and Tribike: Designing Smartphone Control for Cycling

    Get PDF
    The more people commute by bicycle, the higher is the number of cyclists using their smartphones while cycling and compromising traffic safety. We have designed, implemented and evaluated two prototypes for smartphone control devices that do not require the cyclists to remove their hands from the handlebars - the three-button device Tribike and the rotation-controlled Brotate. The devices were the result of a user-centred design process where we identified the key features needed for a on-bike smartphone control device. We evaluated the devices in a biking exercise with 19 participants, where users completed a series of common smartphone tasks. The study showed that Brotate allowed for significantly more lateral control of the bicycle and both devices reduced the cognitive load required to use the smartphone. Our work contributes insights into designing interfaces for cycling.Comment: 22nd International Conference on Human-Computer Interaction with Mobile Devices and Services (MobileHCI '20), October 5--8, 2020, Oldenburg, German

    Live Biofeedback as a User Interface Design Element: A Review of the Literature

    Get PDF
    With the advances in sensor technology and real-time processing of neurophysiological data, a growing body of academic literature has begun to explore how live biofeedback can be integrated into information systems for everyday use. While researchers have traditionally studied live biofeedback in the clinical domain, the proliferation of affordable mobile sensor technology enables researchers and practitioners to consider live biofeedback as a user interface element in contexts such as decision support, education, and gaming. In order to establish the current state of research on live biofeedback, we conducted a literature review on studies that examine self and foreign live biofeedback based on neurophysiological data for healthy subjects in an information systems context. By integrating a body of highly fragmented work from computer science, engineering and technology, information systems, medical science, and psychology, this paper synthesizes results from existing research, identifies knowledge gaps, and suggests directions for future research. In this vein, this review can serve as a reference guide for researchers and practitioners on how to integrate self and foreign live biofeedback into information systems for everyday use

    Designing with biosignals: Challenges, opportunities, and future directions for integrating physiological signals in human-computer interaction

    Get PDF
    Biosensing technologies are a rapidly increasing presence in our daily lives. These sensor-based technologies measure physiological processes including heart rate, breathing, skin conductance, brain activity and more. Researchers are exploring biosensing from perspectives including: engineering, human-computer interaction, medicine, mental health, consumer products, and interactive art. These technologies can enhance our interactions allowing connection to our bodies and others around us across diverse application areas. However, designing with biosignals in Human-Computer Interaction presents new challenges pertaining to User Experience, Input/Output, interpretation of signals, representation, and ethics. There is an urgent need to build a scholarly community that includes the diverse perspectives of researchers, designers, industry practitioners and policymakers. The goal of this workshop is to leverage the knowledge of this community aiming to map out the research landscape of emerging challenges and opportunities, and to build a research agenda for future directions

    Heart Rate Monitoring as an Easy Way to Increase Engagement in Human-Agent Interaction

    Get PDF
    Physiological sensors are gaining the attention of manufacturers and users. As denoted by devices such as smartwatches or the newly released Kinect 2 -- which can covertly measure heartbeats -- or by the popularity of smartphone apps that track heart rate during fitness activities. Soon, physiological monitoring could become widely accessible and transparent to users. We demonstrate how one could take advantage of this situation to increase users' engagement and enhance user experience in human-agent interaction. We created an experimental protocol involving embodied agents -- "virtual avatars". Those agents were displayed alongside a beating heart. We compared a condition in which this feedback was simply duplicating the heart rates of users to another condition in which it was set to an average heart rate. Results suggest a superior social presence of agents when they display feedback similar to users' internal state. This physiological "similarity-attraction" effect may lead, with little effort, to a better acceptance of agents and robots by the general public.Comment: PhyCS - International Conference on Physiological Computing Systems, Feb 2015, Angers, France. SCITEPRESS, \<http://www.phycs.org/\&g

    Shared User Interfaces of Physiological Data: Systematic Review of Social Biofeedback Systems and Contexts in HCI

    Get PDF
    As an emerging interaction paradigm, physiological computing is increasingly being used to both measure and feed back information about our internal psychophysiological states. While most applications of physiological computing are designed for individual use, recent research has explored how biofeedback can be socially shared between multiple users to augment human-human communication. Reflecting on the empirical progress in this area of study, this paper presents a systematic review of 64 studies to characterize the interaction contexts and effects of social biofeedback systems. Our findings highlight the importance of physio-temporal and social contextual factors surrounding physiological data sharing as well as how it can promote social-emotional competences on three different levels: intrapersonal, interpersonal, and task-focused. We also present the Social Biofeedback Interactions framework to articulate the current physiological-social interaction space. We use this to frame our discussion of the implications and ethical considerations for future research and design of social biofeedback interfaces.Comment: [Accepted version, 32 pages] Clara Moge, Katherine Wang, and Youngjun Cho. 2022. Shared User Interfaces of Physiological Data: Systematic Review of Social Biofeedback Systems and Contexts in HCI. In CHI Conference on Human Factors in Computing Systems (CHI'22), ACM, https://doi.org/10.1145/3491102.351749

    Using Bicycles As A Theme For A Cross-Curricular Literacy Program In A Secondary Alternative Setting

    Get PDF
    Practices in constructivist techniques in education and the application of thematic models were researched; the effect of motivation on learning was researched the connection between reading and writing was investigated, the link between vocabulary and reading ability was explored as well as the importance of schema and metacognition. A curriculum was designed using a theme, bicycles, based upon student interests. The curriculum implementation employed a cross-curricular, constructivist model. Research indicated that when reading instruction is delivered via a topic that the students have interest in and ownership of, the students become engaged in the instructional practice. Implications for curriculum design are discussed
    • …
    corecore