7 research outputs found

    Design and Analysis of a Differential Waveguide Structure to Improve Magnetostrictive Linear Position Sensors

    Get PDF
    Magnetostrictive linear position sensors (MLPS) are high-precision sensors used in the industrial field for measuring the propagation time of ultrasonic signals in a waveguide. To date, MLPS have attracted widespread attention for their accuracy, reliability, and cost-efficiency in performing non-contact, multiple measurements. However, the sensor, with its traditional structure, is susceptible to electromagnetic interference, which affects accuracy. In the present study, we propose a novel structure of MLPS that relies on two differential waveguides to improve the signal-to-noise ratio, common-mode rejection ratio, and accuracy of MLPS. The proposed sensor model can depict sensor performance and the relationship of sensor parameters. Experimental results with the new sensor indicate that the new structure can improve accuracy to ±0.1 mm higher than ±0.2 mm with a traditional structure. In addition, the proposed sensor shows a considerable improvement in temperature characteristics

    Determination of a System’s Entropy Using Pyroelectric Sensors

    Get PDF
    We propose a system for measuring entropy variations, S, in thermal systems using pyroelectric sensors. These sensors convert time-dependent temperature variations into electrical current. Consequently, heat and temperature variations are obtained, and sensor entropy is inferred. Various polyvinylidene fluoride and lead zirconate titanate sensors have been tested. Two types of measurements are performed. One in the volume, to measure entropy variations in a heat source, and the other on the surface, to measure entropy flux delivered by the heat source. Thermodynamic models and heat transfer dynamic simulations agree with the experimental results and relate the sensor entropy to the heat source entropy. These results show that pyroelectric sensors can enable entropy monitoring of thermal processes to improve system performance.Postprint (author's final draft

    Charakterisierung funktionaler Nanomaterialien für biomagnetische Sensoren und Atemanalyse

    Get PDF
    The presented thesis is covering materials aspects for the development of magnetoelectric sensors for biomagnetic sensing and solid state sensors for breath monitoring. The electrophysiological signals of the human body and especially their irregularities provide extremely valuable information about the heart, brain or nerve malfunction in medical diagnostics. Similar and even more detailed information is contained in the generated biomagnetic fields which measurement offers improved diagnostics and treatment of the patients. A new type of room temperature operable magnetoelectric composite sensors is developed in the framework of the CRC1261 Magnetoelectric Sensors: From Composite Materials to Biomagnetic Diagnostics. This thesis focuses on the individual materials structure-property relations and their combination in magnetoelectric composite sensors studied by electron beam based techniques, at lengths scales ranging from micrometers to atomic resolution. The first part of this thesis highlights selected studies on the structural and analytic aspects of single phase materials and their composites using TEM as the primary method of investigation. With respect to the piezoelectric phase, alternatives to AlN have been thoroughly investigated to seek for improvement of specific sensor approaches. In this context, the alloying of Sc into the AlN matrix has been demonstrated to yield high quality films with improved piezoelectric and unprecedented ferroelectric properties grown under the control of deposition parameters. Lead-free titanate films with large piezo-coefficients at the verge of the morphotropic phase boundary as alternative to PZT films have been investigated in terms of crystal symmetry, defect structure and domains of cation ordering. New morphologies of ZnO and GaN semiconductors envisioned for a piezotronic-based sensor approach were subject of in-depth defect and analytical studies describing intrinsic defects and lattice strains upon deposition as well as hollow composite structures. When the dimensions of a materials are reduced, novel exciting properties such as in-plane piezoelectricity can arise in planar transition-metal dichalcogenides. Here, the turbostratic disorder in a few-layered MoSe2 film has been investigated by nanobeam electron diffraction and Fast Fourier Transformations. From the perspective of magnetic materials, the atomic structure of magnetostrictive multilayers of FeCo/TiN showing stability up to elevated temperatures has been analyzed in detail regarding the crystallographic relationship of heteroepitaxy in multilayer composites exhibiting individual layer thicknesses below 1 nm. Further, magnetic hard layers have been investigated in the context of exchange spring concepts and ME composites based on shape memory alloy substrates have been studied regarding structural changes implied by different annealing processes. The second part of this thesis introduces materials aspects and sensor studies on gas detection in the clinical context of breath analysis. The detection of specific vapors in the human breath is of medical relevance, since certain species can be enriched depending on the conditions and processes within the human body. Hence, they can be regarded as biomarkers for the patients condition of health. The selection of suitable materials and the gas measurement working principle are considered and selected studies on solid state sensors with different surface functionalization or targeted application on basis of ZnO or CuO-oxide and Fe-oxide species are presented

    Thick film electronic ceramic sensors for civil structures health monitoring

    Get PDF
    Buildings, roads, bridges and structures in general suffer many kinds of damages due to overstress caused by settlements of foundations, high winds, dynamic forces, passing traffic, vibration and unexpected external loads beyond the safe design forces. The damages manifest itself by cracks, falling of plaster and render uneven roads and some time complete collapse. The cost of maintaining and fixing damages caused by the above is quite high for the building and construction industry. The same phenomenon is common to many other structures like airplanes, wind turbine and machinery in general.Structural Health Monitoring (SHM) is the engineering branch, which aims to give, at every moment during the life of a structure, a diagnosis of the "state" of the constituent materials, of the different parts of a structure. The state of the structure must remain in the domain specified in the design, although this can be altered due to usage or due to normal aging by the action of the environment, and by accidental events. By using special electronic sensors to monitor the unexpected high concentration of stresses or changes of these stresses throughout the life of the structure and pavement, reduces the cost of maintenance and repair. Historic buildings would also benefit from using such sensors to monitor the overstress in the old and frugally stones and bricks. The sensors can be embedded in the lime mortar joints and an electronic meter is used periodically to check for any unusual overstress during the life of the building.The main aim of the proposed research project is to investigate the possibility of using thick-film technology stress sensors in masonry, concrete and building materials in general to monitor overstress and instability throughout the life of the structures. The sensors could be used in brick, block, stone, and concrete and they could be mounted on the surface or embedded in the materials.There are many research studies on strain gauge devices in structural monitoring; Thick Film (TF) piezo-resistive sensors are proposed as a direct alternative to the widely used metal Foil Strain Gauges (FSG). Due to the low cost of TF sensors, their ease of use, suitability to integrate electronics on board, and to have different geometrical shapes, they could be deployed at different locations in a building, road or be distributed in arrays. This offers the continuous monitoring of stresses at any time by using a data logger on two points on the surface or by using wireless electronic transmission.In this research, new thick film screen-printed ceramic piezo-resistive sensor has been developed and characterized as discrete device for deployment on surface of a structure and embedded into the structure during building material curing or after structure erection. The sensor response on different building materials has been experimented and compared. Mechanical and electronic simulation tools were used to characterise the sensor and to choose an adequate interface electronic circuit.The experimental results of the simulated sensor and circuitry, showed the suitability of the sensor to be embedded in building materials during curing period and on erected structures. Materials used were wood, concrete, brick and plaster. In addition, the overall linearity of response of the sensors applied on building material surface was asserted which makes the technology a candidate for a more wide deployment in SHM field
    corecore