11,492 research outputs found

    Anuário científico da Escola Superior de Tecnologia da Saúde de Lisboa - 2021

    Get PDF
    É com grande prazer que apresentamos a mais recente edição (a 11.ª) do Anuário Científico da Escola Superior de Tecnologia da Saúde de Lisboa. Como instituição de ensino superior, temos o compromisso de promover e incentivar a pesquisa científica em todas as áreas do conhecimento que contemplam a nossa missão. Esta publicação tem como objetivo divulgar toda a produção científica desenvolvida pelos Professores, Investigadores, Estudantes e Pessoal não Docente da ESTeSL durante 2021. Este Anuário é, assim, o reflexo do trabalho árduo e dedicado da nossa comunidade, que se empenhou na produção de conteúdo científico de elevada qualidade e partilhada com a Sociedade na forma de livros, capítulos de livros, artigos publicados em revistas nacionais e internacionais, resumos de comunicações orais e pósteres, bem como resultado dos trabalhos de 1º e 2º ciclo. Com isto, o conteúdo desta publicação abrange uma ampla variedade de tópicos, desde temas mais fundamentais até estudos de aplicação prática em contextos específicos de Saúde, refletindo desta forma a pluralidade e diversidade de áreas que definem, e tornam única, a ESTeSL. Acreditamos que a investigação e pesquisa científica é um eixo fundamental para o desenvolvimento da sociedade e é por isso que incentivamos os nossos estudantes a envolverem-se em atividades de pesquisa e prática baseada na evidência desde o início dos seus estudos na ESTeSL. Esta publicação é um exemplo do sucesso desses esforços, sendo a maior de sempre, o que faz com que estejamos muito orgulhosos em partilhar os resultados e descobertas dos nossos investigadores com a comunidade científica e o público em geral. Esperamos que este Anuário inspire e motive outros estudantes, profissionais de saúde, professores e outros colaboradores a continuarem a explorar novas ideias e contribuir para o avanço da ciência e da tecnologia no corpo de conhecimento próprio das áreas que compõe a ESTeSL. Agradecemos a todos os envolvidos na produção deste anuário e desejamos uma leitura inspiradora e agradável.info:eu-repo/semantics/publishedVersio

    A direct-laser-written heart-on-a-chip platform for generation and stimulation of engineered heart tissues

    Full text link
    In this dissertation, we first develop a versatile microfluidic heart-on-a-chip model to generate 3D-engineered human cardiac microtissues in highly-controlled microenvironments. The platform, which is enabled by direct laser writing (DLW), has tailor-made attachment sites for cardiac microtissues and comes with integrated strain actuators and force sensors. Application of external pressure waves to the platform results in controllable time-dependent forces on the microtissues. Conversely, oscillatory forces generated by the microtissues are transduced into measurable electrical outputs. After characterization of the responsivity of the transducers, we demonstrate the capabilities of this platform by studying the response of cardiac microtissues to prescribed mechanical loading and pacing. Next, we tune the geometry and mechanical properties of the platform to enable parametric studies on engineered heart tissues. We explore two geometries: a rectangular seeding well with two attachment sites, and a stadium-like seeding well with six attachment sites. The attachment sites are placed symmetrically in the longitudinal direction. The former geometry promotes uniaxial contraction of the tissues; the latter additionally induces diagonal fiber alignment. We systematically increase the length for both configurations and observe a positive correlation between fiber alignment at the center of the microtissues and tissue length. However, progressive thinning and “necking” is also observed, leading to the failure of longer tissues over time. We use the DLW technique to improve the platform, softening the mechanical environment and optimizing the attachment sites for generation of stable microtissues at each length and geometry. Furthermore, electrical pacing is incorporated into the platform to evaluate the functional dynamics of stable microtissues over the entire range of physiological heart rates. Here, we typically observe a decrease in active force and contraction duration as a function of frequency. Lastly, we use a more traditional ?TUG platform to demonstrate the effects of subthreshold electrical pacing on the rhythm of the spontaneously contracting cardiac microtissues. Here, we observe periodic M:N patterns, in which there are ? cycles of stimulation for every ? tissue contractions. Using electric field amplitude, pacing frequency, and homeostatic beating frequencies of the tissues, we provide an empirical map for predicting the emergence of these rhythms

    Visualisation of Fundamental Movement Skills (FMS): An Iterative Process Using an Overarm Throw

    Get PDF
    Fundamental Movement Skills (FMS) are precursor gross motor skills to more complex or specialised skills and are recognised as important indicators of physical competence, a key component of physical literacy. FMS are predominantly assessed using pre-defined manual methodologies, most commonly the various iterations of the Test of Gross Motor Development. However, such assessments are time-consuming and often require a minimum basic level of training to conduct. Therefore, the overall aim of this thesis was to utilise accelerometry to develop a visualisation concept as part of a feasibility study to support the learning and assessment of FMS, by reducing subjectivity and the overall time taken to conduct a gross motor skill assessment. The overarm throw, an important fundamental movement skill, was specifically selected for the visualisation development as it is an acyclic movement with a distinct initiation and conclusion. Thirteen children (14.8 ± 0.3 years; 9 boys) wore an ActiGraph GT9X Link Inertial Measurement Unit device on the dominant wrist whilst performing a series of overarm throws. This thesis illustrates how the visualisation concept was developed using raw accelerometer data, which was processed and manipulated using MATLAB 2019b software to obtain and depict key throw performance data, including the trajectory and velocity of the wrist during the throw. Overall, this thesis found that the developed visualisation concept can provide strong indicators of throw competency based on the shape of the throw trajectory. Future research should seek to utilise a larger, more diverse, population, and incorporate machine learning. Finally, further work is required to translate this concept to other gross motor skills

    Review of Methodologies to Assess Bridge Safety During and After Floods

    Get PDF
    This report summarizes a review of technologies used to monitor bridge scour with an emphasis on techniques appropriate for testing during and immediately after design flood conditions. The goal of this study is to identify potential technologies and strategies for Illinois Department of Transportation that may be used to enhance the reliability of bridge safety monitoring during floods from local to state levels. The research team conducted a literature review of technologies that have been explored by state departments of transportation (DOTs) and national agencies as well as state-of-the-art technologies that have not been extensively employed by DOTs. This review included informational interviews with representatives from DOTs and relevant industry organizations. Recommendations include considering (1) acquisition of tethered kneeboard or surf ski-mounted single-beam sonars for rapid deployment by local agencies, (2) acquisition of remote-controlled vessels mounted with single-beam and side-scan sonars for statewide deployment, (3) development of large-scale particle image velocimetry systems using remote-controlled drones for stream velocity and direction measurement during floods, (4) physical modeling to develop Illinois-specific hydrodynamic loading coefficients for Illinois bridges during flood conditions, and (5) development of holistic risk-based bridge assessment tools that incorporate structural, geotechnical, hydraulic, and scour measurements to provide rapid feedback for bridge closure decisions.IDOT-R27-SP50Ope

    Optimisation of Triboelectric Nanogenerator performance in vertical contact-separation mode

    Get PDF
    Triboelectric nanogenerator (TENG) is one of the most promising energy harvesters – a technology that uses repeated or reciprocating contact of suitably chosen materials to generate charge via the triboelectric effect (TE) and utilizes this as usable voltage and current. TENGs are attractive as they can continuously generate charge over a wide range of operating conditions and have several valuable advantages such as light weight, simple structure, low cost and high efficiency. Therefore, TENGs have been explored in a wide range of applications, including self-powered wearable electronics, powering electronics and even for harvesting ocean wave/wind energy. One of the major limitations of TENGs is their low power output (usually <500 W/m2). This thesis focuses of a few specific approaches to optimising TENG output performance. This thesis begins by presenting a solution to this challenge by optimizing a low permittivity substrate beneath the tribo-contact layer. The open circuit voltage is found to increase by a factor of 1.3 in moving from PET to the lower permittivity PTFE. TENG performance is also believed to depend on contact force, but the origin of the dependence had not previously been explored. Herein, we show that this behaviour results from a contact force dependent real contact area Ar as governed by surface roughness. The open circuit voltage Voc, short circuit current Isc and Ar for a TENG were found to increase with contact force/pressure. Critically, Voc and Isc saturate at the same contact pressure as Ar suggesting that electrical output follows the same evolution as Ar. Assuming that tribo charges can only transfer across the interface at areas of real contact, it follows that an increasing Ar with contact pressure should produce a corresponding increase in the electrical output. These results underline the importance of accounting for real contact area in TENG design, as well as the distinction between real and nominal contact area in tribo-charge density definition. High-performance ferroelectricassisted TENGs (Fe-TENGs) are developed using electrospun fibrous surfaces based on P(VDFTrFE) with dispersed BaTiO3 (BTO) nanofillers in either cubic (CBTO) or tetragonal (TBTO) form in this thesis. TENGs with three types of tribo-negative surface were investigated and output increased progressively. Critically, P(VDF-TrFE)/TBTO produced higher output than P(VDFTrFE)/ CBTO even though permittivity is nearly identical. Thus, it is shown that BTO fillers boost output, not just by increasing permittivity, but also by enhancing the crystallinity and amount of the β-phase (as TBTO produced a more crystalline β-phase present in greater amounts)

    Acoustic emission enabled particle size estimation via low stress-varied axial interface shearing

    Get PDF
    Acoustic emission (AE) refers to a rapid release of localized stress energy that propagates as a transient elastic wave and is typically used in geotechnical applications to study stick-slip during shearing, and breakage and fracture of particles. This article develops a novel method of estimating the particle size, an important characteristic of granular materials, using axial interface shearing-induced AE signals. Specifically, a test setup that enables axial interface shearing between a one-dimensional compression granular deposit and a smooth shaft surface is developed. The interface sliding speed (up to 3mm/s), the compression stress (0-135kPa), and the particle size (150ÎĽm-5mm) are varied to test the acoustic response. The start and end moments of a shearing motion, between which a burst of AE data is produced, are identified through the variation of the AE count rates, before key parameters can be extracted from the bursts of interests. Linear regression models are then built to correlate the AE parameters with particle size, where a comprehensive evaluation and comparison in terms of estimation errors is performed. For granular samples with a single size, it is found that both the AE energy related parameters and AE counts, obtained using an appropriate threshold voltage, are effective in differentiating the particle size, exhibiting low fitting errors. The value of this technique lies in its potential application to field testing, for example as an add-on to cone penetration test systems and to enable in-situ characterization of geological deposits

    Optimising acoustic cavitation for industrial application

    Get PDF
    The ultrasonic horn is one of the most commonly used acoustic devices in laboratories and industry. For its efficient application to cavitation mediated process, the cavitation generated at its tip as a function of its tip-vibration amplitudes still needed to be studied in detail. High-speed imaging and acoustic detection are used to investigate the cavitation generated at the tip of an ultrasonic horn, operating at a fundamental frequency, f0, of 20 kHz. Tip-vibration amplitudes are sampled at fine increments across the range of input powers available. The primary bubble cluster under the tip is found to undergo subharmonic periodic collapse, with concurrent shock wave emission, at frequencies of f0/m, with m increasing through integer values with increasing tip-vibration amplitude. The contribution of periodic shock waves to the noise spectra of the acoustic emissions is confirmed. Transitional input powers for which the value of m is indistinct, and shock wave emission irregular and inconsistent, are identified through Vrms of the acoustic detector output. For cavitation applications mediated by bubble collapse, sonications at transitional powers may lead to inefficient processing. The ultrasonic horn is also deployed to investigate the role of shock waves in the fragmentation of intermetallic crystals, nominally for ultrasonic treatment of Aluminium melt, and in a novel two-horn configuration for potential cavitation enhancement effects. An experiment investigating nitrogen fixation via cavitation generated by focused ultrasound exposures is also described. Vrms from the acoustic detector is again used to quantify the acoustic emissions for comparison to the sonochemical nitrite yield and for optimisation of sonication protocols at constant input energy. The findings revealed that the acoustic cavitation could be enhanced at constant input energy through optimisation of the pulse duration and pulse interval. Anomalous results may be due to inadequate assessment for the nitrate generated. The studies presented in this thesis have illustrated means of improving the cavitation efficiency of the used acoustic devices, which may be important to some selected industrial processes

    The Role of Transient Vibration of the Skull on Concussion

    Get PDF
    Concussion is a traumatic brain injury usually caused by a direct or indirect blow to the head that affects brain function. The maximum mechanical impedance of the brain tissue occurs at 450±50 Hz and may be affected by the skull resonant frequencies. After an impact to the head, vibration resonance of the skull damages the underlying cortex. The skull deforms and vibrates, like a bell for 3 to 5 milliseconds, bruising the cortex. Furthermore, the deceleration forces the frontal and temporal cortex against the skull, eliminating a layer of cerebrospinal fluid. When the skull vibrates, the force spreads directly to the cortex, with no layer of cerebrospinal fluid to reflect the wave or cushion its force. To date, there is few researches investigating the effect of transient vibration of the skull. Therefore, the overall goal of the proposed research is to gain better understanding of the role of transient vibration of the skull on concussion. This goal will be achieved by addressing three research objectives. First, a MRI skull and brain segmentation automatic technique is developed. Due to bones’ weak magnetic resonance signal, MRI scans struggle with differentiating bone tissue from other structures. One of the most important components for a successful segmentation is high-quality ground truth labels. Therefore, we introduce a deep learning framework for skull segmentation purpose where the ground truth labels are created from CT imaging using the standard tessellation language (STL). Furthermore, the brain region will be important for a future work, thus, we explore a new initialization concept of the convolutional neural network (CNN) by orthogonal moments to improve brain segmentation in MRI. Second, the creation of a novel 2D and 3D Automatic Method to Align the Facial Skeleton is introduced. An important aspect for further impact analysis is the ability to precisely simulate the same point of impact on multiple bone models. To perform this task, the skull must be precisely aligned in all anatomical planes. Therefore, we introduce a 2D/3D technique to align the facial skeleton that was initially developed for automatically calculating the craniofacial symmetry midline. In the 2D version, the entire concept of using cephalometric landmarks and manual image grid alignment to construct the training dataset was introduced. Then, this concept was extended to a 3D version where coronal and transverse planes are aligned using CNN approach. As the alignment in the sagittal plane is still undefined, a new alignment based on these techniques will be created to align the sagittal plane using Frankfort plane as a framework. Finally, the resonant frequencies of multiple skulls are assessed to determine how the skull resonant frequency vibrations propagate into the brain tissue. After applying material properties and mesh to the skull, modal analysis is performed to assess the skull natural frequencies. Finally, theories will be raised regarding the relation between the skull geometry, such as shape and thickness, and vibration with brain tissue injury, which may result in concussive injury

    Fiabilité de l’underfill et estimation de la durée de vie d’assemblages microélectroniques

    Get PDF
    Abstract : In order to protect the interconnections in flip-chip packages, an underfill material layer is used to fill the volumes and provide mechanical support between the silicon chip and the substrate. Due to the chip corner geometry and the mismatch of coefficient of thermal expansion (CTE), the underfill suffers from a stress concentration at the chip corners when the temperature is lower than the curing temperature. This stress concentration leads to subsequent mechanical failures in flip-chip packages, such as chip-underfill interfacial delamination and underfill cracking. Local stresses and strains are the most important parameters for understanding the mechanism of underfill failures. As a result, the industry currently relies on the finite element method (FEM) to calculate the stress components, but the FEM may not be accurate enough compared to the actual stresses in underfill. FEM simulations require a careful consideration of important geometrical details and material properties. This thesis proposes a modeling approach that can accurately estimate the underfill delamination areas and crack trajectories, with the following three objectives. The first objective was to develop an experimental technique capable of measuring underfill deformations around the chip corner region. This technique combined confocal microscopy and the digital image correlation (DIC) method to enable tri-dimensional strain measurements at different temperatures, and was named the confocal-DIC technique. This techique was first validated by a theoretical analysis on thermal strains. In a test component similar to a flip-chip package, the strain distribution obtained by the FEM model was in good agreement with the results measured by the confocal-DIC technique, with relative errors less than 20% at chip corners. Then, the second objective was to measure the strain near a crack in underfills. Artificial cracks with lengths of 160 μm and 640 μm were fabricated from the chip corner along the 45° diagonal direction. The confocal-DIC-measured maximum hoop strains and first principal strains were located at the crack front area for both the 160 μm and 640 μm cracks. A crack model was developed using the extended finite element method (XFEM), and the strain distribution in the simulation had the same trend as the experimental results. The distribution of hoop strains were in good agreement with the measured values, when the model element size was smaller than 22 μm to capture the strong strain gradient near the crack tip. The third objective was to propose a modeling approach for underfill delamination and cracking with the effects of manufacturing variables. A deep thermal cycling test was performed on 13 test cells to obtain the reference chip-underfill delamination areas and crack profiles. An artificial neural network (ANN) was trained to relate the effects of manufacturing variables and the number of cycles to first delamination of each cell. The predicted numbers of cycles for all 6 cells in the test dataset were located in the intervals of experimental observations. The growth of delamination was carried out on FEM by evaluating the strain energy amplitude at the interface elements between the chip and underfill. For 5 out of 6 cells in validation, the delamination growth model was consistent with the experimental observations. The cracks in bulk underfill were modelled by XFEM without predefined paths. The directions of edge cracks were in good agreement with the experimental observations, with an error of less than 2.5°. This approach met the goal of the thesis of estimating the underfill initial delamination, areas of delamination and crack paths in actual industrial flip-chip assemblies.Afin de protéger les interconnexions dans les assemblages, une couche de matériau d’underfill est utilisée pour remplir le volume et fournir un support mécanique entre la puce de silicium et le substrat. En raison de la géométrie du coin de puce et de l’écart du coefficient de dilatation thermique (CTE), l’underfill souffre d’une concentration de contraintes dans les coins lorsque la température est inférieure à la température de cuisson. Cette concentration de contraintes conduit à des défaillances mécaniques dans les encapsulations de flip-chip, telles que la délamination interfaciale puce-underfill et la fissuration d’underfill. Les contraintes et déformations locales sont les paramètres les plus importants pour comprendre le mécanisme des ruptures de l’underfill. En conséquent, l’industrie utilise actuellement la méthode des éléments finis (EF) pour calculer les composantes de la contrainte, qui ne sont pas assez précises par rapport aux contraintes actuelles dans l’underfill. Ces simulations nécessitent un examen minutieux de détails géométriques importants et des propriétés des matériaux. Cette thèse vise à proposer une approche de modélisation permettant d’estimer avec précision les zones de délamination et les trajectoires des fissures dans l’underfill, avec les trois objectifs suivants. Le premier objectif est de mettre au point une technique expérimentale capable de mesurer la déformation de l’underfill dans la région du coin de puce. Cette technique, combine la microscopie confocale et la méthode de corrélation des images numériques (DIC) pour permettre des mesures tridimensionnelles des déformations à différentes températures, et a été nommée le technique confocale-DIC. Cette technique a d’abord été validée par une analyse théorique en déformation thermique. Dans un échantillon similaire à un flip-chip, la distribution de la déformation obtenues par le modèle EF était en bon accord avec les résultats de la technique confocal-DIC, avec des erreurs relatives inférieures à 20% au coin de puce. Ensuite, le second objectif est de mesurer la déformation autour d’une fissure dans l’underfill. Des fissures artificielles d’une longueuer de 160 μm et 640 μm ont été fabriquées dans l’underfill vers la direction diagonale de 45°. Les déformations circonférentielles maximales et principale maximale étaient situées aux pointes des fissures correspondantes. Un modèle de fissure a été développé en utilisant la méthode des éléments finis étendue (XFEM), et la distribution des contraintes dans la simuation a montré la même tendance que les résultats expérimentaux. La distribution des déformations circonférentielles maximales était en bon accord avec les valeurs mesurées lorsque la taille des éléments était plus petite que 22 μm, assez petit pour capturer le grand gradient de déformation près de la pointe de fissure. Le troisième objectif était d’apporter une approche de modélisation de la délamination et de la fissuration de l’underfill avec les effets des variables de fabrication. Un test de cyclage thermique a d’abord été effectué sur 13 cellules pour obtenir les zones délaminées entre la puce et l’underfill, et les profils de fissures dans l’underfill, comme référence. Un réseau neuronal artificiel (ANN) a été formé pour établir une liaison entre les effets des variables de fabrication et le nombre de cycles à la délamination pour chaque cellule. Les nombres de cycles prédits pour les 6 cellules de l’ensemble de test étaient situés dans les intervalles d’observations expérimentaux. La croissance de la délamination a été réalisée par l’EF en évaluant l’énergie de la déformation au niveau des éléments interfaciaux entre la puce et l’underfill. Pour 5 des 6 cellules de la validation, le modèle de croissance du délaminage était conforme aux observations expérimentales. Les fissures dans l’underfill ont été modélisées par XFEM sans chemins prédéfinis. Les directions des fissures de bord étaient en bon accord avec les observations expérimentales, avec une erreur inférieure à 2,5°. Cette approche a répondu à la problématique qui consiste à estimer l’initiation des délamination, les zones de délamination et les trajectoires de fissures dans l’underfill pour des flip-chips industriels
    • …
    corecore