4,051 research outputs found

    Design principles of hardware-based phong shading and bump-mapping

    Get PDF
    The VISA+ hardware architecture is the first of a new generation of graphics accelerators designed primarily to render bump-, texture-, environment- and environment-bump-mapped polygons. This paper presents examples of the main graphical capabilities and discusses methods and simplifications used to create high quality images. One of the key concepts in the VISA+ design, the use of reflectance cubes, is predestined for environment mapping. In combination with bump- and texture-mapping it shows the strength of our new architecture. Furthermore it justifies some of the decisions made during simulation and development of the complex VISA+ architecture

    Design of a High-Speed Architecture for Stabilization of Video Captured Under Non-Uniform Lighting Conditions

    Get PDF
    Video captured in shaky conditions may lead to vibrations. A robust algorithm to immobilize the video by compensating for the vibrations from physical settings of the camera is presented in this dissertation. A very high performance hardware architecture on Field Programmable Gate Array (FPGA) technology is also developed for the implementation of the stabilization system. Stabilization of video sequences captured under non-uniform lighting conditions begins with a nonlinear enhancement process. This improves the visibility of the scene captured from physical sensing devices which have limited dynamic range. This physical limitation causes the saturated region of the image to shadow out the rest of the scene. It is therefore desirable to bring back a more uniform scene which eliminates the shadows to a certain extent. Stabilization of video requires the estimation of global motion parameters. By obtaining reliable background motion, the video can be spatially transformed to the reference sequence thereby eliminating the unintended motion of the camera. A reflectance-illuminance model for video enhancement is used in this research work to improve the visibility and quality of the scene. With fast color space conversion, the computational complexity is reduced to a minimum. The basic video stabilization model is formulated and configured for hardware implementation. Such a model involves evaluation of reliable features for tracking, motion estimation, and affine transformation to map the display coordinates of a stabilized sequence. The multiplications, divisions and exponentiations are replaced by simple arithmetic and logic operations using improved log-domain computations in the hardware modules. On Xilinx\u27s Virtex II 2V8000-5 FPGA platform, the prototype system consumes 59% logic slices, 30% flip-flops, 34% lookup tables, 35% embedded RAMs and two ZBT frame buffers. The system is capable of rendering 180.9 million pixels per second (mpps) and consumes approximately 30.6 watts of power at 1.5 volts. With a 1024×1024 frame, the throughput is equivalent to 172 frames per second (fps). Future work will optimize the performance-resource trade-off to meet the specific needs of the applications. It further extends the model for extraction and tracking of moving objects as our model inherently encapsulates the attributes of spatial distortion and motion prediction to reduce complexity. With these parameters to narrow down the processing range, it is possible to achieve a minimum of 20 fps on desktop computers with Intel Core 2 Duo or Quad Core CPUs and 2GB DDR2 memory without a dedicated hardware

    A high-accuracy optical linear algebra processor for finite element applications

    Get PDF
    Optical linear processors are computationally efficient computers for solving matrix-matrix and matrix-vector oriented problems. Optical system errors limit their dynamic range to 30-40 dB, which limits their accuray to 9-12 bits. Large problems, such as the finite element problem in structural mechanics (with tens or hundreds of thousands of variables) which can exploit the speed of optical processors, require the 32 bit accuracy obtainable from digital machines. To obtain this required 32 bit accuracy with an optical processor, the data can be digitally encoded, thereby reducing the dynamic range requirements of the optical system (i.e., decreasing the effect of optical errors on the data) while providing increased accuracy. This report describes a new digitally encoded optical linear algebra processor architecture for solving finite element and banded matrix-vector problems. A linear static plate bending case study is described which quantities the processor requirements. Multiplication by digital convolution is explained, and the digitally encoded optical processor architecture is advanced

    Hybrid Control of a Segway Platform Developed in MRDS

    No full text
    A Segway RMP200 has been bought by Victoria University for the purpose of making an autonomous robot. The focus of this project was to create reusable services that use existing navigation algorithms to control the Segway within an indoor environment. A SICK LMS100 laser rangefinder was added to detect obstacles and allow localization of the Segway within a known map. A hybrid navigation algorithm consisting of an A* path planner with a dynamic window is used for motion planning and obstacle avoidance. The control system followed a Service Oriented Architecture implemented in Microsoft Robotics Studio using the C# .NET programming language. Four services were created during the project to interface with the SICK LMS100 scanner, control the Segway RMP200, implement the hybrid navigation algorithm and provide a graphic user interface for the system. Tests show that the Segway is able to navigate and maintain localisation within the operating environment by identifying and associating corner and door landmarks within the environment
    • …
    corecore