31,153 research outputs found

    Nonlinear Single-Armed Spiral Density Waves in Nearly Keplerian Disks

    Get PDF
    Single-armed, stationary density waves can propagate in very weakly self-gravitating gas disks dominated by a central mass. Examples include circumstellar disks of protostars and molecular disks in galactic nuclei. We explore the linear and nonlinear dynamics of such waves. Variational methods yield nonlinear versions of the dispersion relation, angular momentum flux, and propagation velocity in the tight-winding limit. The pitch angle increases with amplitude until the tight-winding approximation breaks down. We also find a series of nonlinear logarithmic spirals which is exact in the limit of small disk mass and which extends to large pitch angle.Comment: 16 pages, 3 figures. Uses mn.sty and mncite.sty. Accepted by MNRA

    Maximally Star-Forming Galactic Disks I. Starburst Regulation Via Feedback-Driven Turbulence

    Full text link
    Star formation rates in the centers of disk galaxies often vastly exceed those at larger radii. We investigate the idea that these central starbursts are self-regulated, with the momentum flux injected to the ISM by star formation balancing the gravitational force confining the gas. For most starbursts, supernovae are the largest contributor to the momentum flux, and turbulence provides the main pressure support for the predominantly-molecular ISM. If the momentum feedback per stellar mass formed is p_*/m_* ~ 3000 km/s, the predicted star formation rate is Sigma_SFR=2 pi G Sigma^2 m_*/p_* ~0.1(Sigma/100Msun/pc^2)^2 Msun/kpc^2/yr in regions where gas dominates the vertical gravity. We compare this prediction with numerical simulations of vertically-resolved disks that model star formation including feedback, finding good agreement for gas surface densities Sigma ~ 10^2-10^3 Msun/pc^2. We also compare to a compilation of star formation rates and gas contents from local and high-redshift galaxies (both mergers and normal galaxies), finding good agreement provided that X_CO decreases weakly as Sigma and Sigma_SFR increase. Star formation rates in dense, turbulent gas are also expected to depend on the gravitational free-fall time; if the efficiency per free-fall time is epsilon_ff ~ 0.01, the turbulent velocity dispersion driven by feedback is expected to be v_z = 0.4 epsilon_ff p_*/m_* ~ 10 km/s, relatively independent of Sigma or Sigma_SFR. Turbulence-regulated starbursts (controlled by kinetic momentum feedback) are part of the larger scheme of self-regulation; primarily-atomic low-Sigma outer disks may have star formation regulated by UV heating feedback, whereas regions at extremely high Sigma may be regulated by feedback of radiation that is reprocessed into trapped IR.Comment: 35 pages, 5 figures; accepted by the Ap

    A law for star formation in galaxies

    Full text link
    We study the galactic-scale triggering of star formation. We find that the largest mass-scale not stabilized by rotation, a well defined quantity in a rotating system and with clear dynamical meaning, strongly correlates with the star formation rate in a wide range of galaxies. We find that this relation can be understood in terms of self-regulation towards marginal Toomre stability and the amount of turbulence allowed to sustain the system in this self-regulated quasi-stationary state. We test such an interpretation by computing the predicted star formation rates for a galactic interstellar medium characterized by lognormal probability distribution function and find good agreement with the observed relation.Comment: 13 pages, 2 figures, Accepted in Ap

    Planetary embryos and planetesimals residing in thin debris disks

    Full text link
    We consider constraints on the planetesimal population residing in the disks of AU Microscopii, Beta Pictoris and Fomalhaut taking into account their observed thicknesses and normal disk opacities. We estimate that bodies of radius 5, 180 and 70 km are responsible for initiating the collisional cascade accounting for the dust production for AU-Mic, Beta-Pic and Fomalhaut's disks, respectively, at break radii from the star where their surface brightness profiles change slope. Larger bodies, of radius 1000km and with surface density of order 0.01 g/cm^2, are required to explain the thickness of these disks assuming that they are heated by gravitational stirring. A comparison between the densities of the two sizes suggests the size distribution in the largest bodies is flatter than that observed in the Kuiper belt. AU Mic's disk requires the shallowest size distribution for bodies with radius greater than 10km suggesting that the disk contains planetary embryos experiencing a stage of runaway growth.Comment: submitted to MNRA

    Discovery of Recent Star Formation in the Extreme Outer Regions of Disk Galaxies

    Get PDF
    We present deep Halpha images of three nearby late-type spiral galaxies (NGC628, NGC1058 and NGC6946), which reveal the presence of HII regions out to, and beyond, two optical radii (defined by the 25th B-band isophote). The outermost HII regions appear small, faint and isolated, compared to their inner disk counterparts, and are distributed in organized spiral arm structures, likely associated with underlying HI arms and faint stellar arms. The relationship between the azimuthally--averaged Halpha surface brightness (proportional to star formation rate per unit area) and the total gas surface density is observed to steepen considerably at low gas surface densities. We find that this effect is largely driven by a sharp decrease in the covering factor of star formation at large radii, and not by changes in the rate at which stars form locally. An azimuthally--averaged analysis of the gravitational stability of the disk of NGC6946 reveals that while the existence of star formation in the extreme outer disk is consistent with the Toomre-Q instability model, the low rates observed are only compatible with the model when a constant gaseous velocity dispersion is assumed. We suggest that observed behaviour could also be explained by a model in which the star formation rate has an intrinsic dependence on the azimuthally-averaged gas volume density, which decreases rapidly in the outer disk due to the vertical flaring of the gas layer.Comment: 10 pages, 2 embedded postscript files, 3 jpeg images; accepted for publication in ApJ Letter
    • …
    corecore