1,064 research outputs found

    Experimental investigations of two-phase flow measurement using ultrasonic sensors

    Get PDF
    This thesis presents the investigations conducted in the use of ultrasonic technology to measure two-phase flow in both horizontal and vertical pipe flows which is important for the petroleum industry. However, there are still key challenges to measure parameters of the multiphase flow accurately. Four methods of ultrasonic technologies were explored. The Hilbert-Huang transform (HHT) was first applied to the ultrasound signals of air-water flow on horizontal flow for measurement of the parameters of the two- phase slug flow. The use of the HHT technique is sensitive enough to detect the hydrodynamics of the slug flow. The results of the experiments are compared with correlations in the literature and are in good agreement. Next, experimental data of air-water two-phase flow under slug, elongated bubble, stratified-wavy and stratified flow regimes were used to develop an objective flow regime classification of two-phase flow using the ultrasonic Doppler sensor and artificial neural network (ANN). The classifications using the power spectral density (PSD) and discrete wavelet transform (DWT) features have accuracies of 87% and 95.6% respectively. This is considerably more promising as it uses non-invasive and non-radioactive sensors. Moreover, ultrasonic pulse wave transducers with centre frequencies of 1MHz and 7.5MHz were used to measure two-phase flow both in horizontal and vertical flow pipes. The liquid level measurement was compared with the conductivity probes technique and agreed qualitatively. However, in the vertical with a gas volume fraction (GVF) higher than 20%, the ultrasound signals were attenuated. Furthermore, gas-liquid and oil-water two-phase flow rates in a vertical upward flow were measured using a combination of an ultrasound Doppler sensor and gamma densitometer. The results showed that the flow gas and liquid flow rates measured are within ±10% for low void fraction tests, water-cut measurements are within ±10%, densities within ±5%, and void fractions within ±10%. These findings are good results for a relatively fast flowing multiphase flow

    Current methods for characterising mixing and flow in microchannels

    Get PDF
    This article reviews existing methods for the characterisation of mixing and flow in microchannels, micromixers and microreactors. In particular, it analyses the current experimental techniques and methods available for characterising mixing and the associated phenomena in single and multiphase flow. The review shows that the majority of the experimental techniques used for characterising mixing and two-phase flow in microchannels employ optical methods, which require optical access to the flow, or off-line measurements. Indeed visual measurements are very important for the fundamental understanding of the physics of these flows and the rapid advances in optical measurement techniques, like confocal scanning laser microscopy and high resolution stereo micro particle image velocimetry, are now making full field data retrieval possible. However, integration of microchannel devices in industrial processes will require on-line measurements for process control that do not necessarily rely on optical techniques. Developments are being made in the areas of non-intrusive sensors, magnetic resonance techniques, ultrasonic spectroscopy and on-line flow through measurement cells. The advances made in these areas will certainly be of increasing interest in the future as microchannels are more frequently employed in continuous flow equipment for industrial applications

    Application of ultrasound techniques to liquid-liquid dispersed flows

    Get PDF
    This paper delineates the development and application of non-intrusive diagnostic ultrasound (US) techniques for the measurement of the drop size distribution (DSD) and the drop volume fraction in dispersed liquid-liquid flows. The techniques used here are based on the measurement of the speed and the attenuation coefficient of the propagated ultrasound wave. To validate the results of the ultrasound measurements, a planar laser induced fluorescence (PLIF) technique was used to image the dispersed phase at the same time and location as the ultrasound transducers. For the tests, a silicon oil and a glycerol/water mixture, with the same refractive index as the oil, were used. The experiments were carried out in a stirred vessel with the impeller placed either just below the oil/aqueous mixture interface or at 25 mm below the interface and rotated at speeds of 300–400 rpm. The dispersed oil volume fractions measured by both the US and PLIF techniques were in excellent agreement and varied between 0.53% to 4.2%. Good agreement between the two techniques was also found for the drop size distributions. For the conditions investigated, the drop size ranged from 0.25 mm to 2 mm. The results indicated that the developed ultrasound technique is a powerful tool for characterising dispersed phases in liquid-liquid flows

    Contents

    Get PDF

    Additive manufacturing (3D print) of air-coupled diaphragm ultrasonic transdrucers

    Get PDF
    Air-coupled ultrasound is a non-contact technology that has become increasingly common in Non Destructive Evaluation (NDE) and material evaluation. Normally, the bandwidth of a conventional transducer can be enhanced, but with a cost to its sensitivity. However, low sensitivity is very disadvantageous in air-coupled devices. This thesis proposes a methodology for improving the bandwidth of an air-coupled micro-machined ultrasonic transducer (MUT) without sensitivity loss by connecting a number of resonating pipes of various length to a cavity in the backplate. This design is inspired by the pipe organ musical instrument, where the resonant frequency (pitch) of each pipe is mainly determined by its length. The −6 dB bandwidth of the "pipe organ" inspired air-coupled transducer is 55.7% and 58.5% in transmitting and receiving modes, respectively, which is ∼5 times wider than a custom-built standard device. After validating the concept via a series of single element low-frequency prototypes, two improved designs: the multiple element and the high-frequency single element pipe organ transducers were simulated in order to tailor the pipe organ design to NDE applications.Although the simulated and experimental performance of the pipe organ inspired transducers are proved to be significantly better than the conventional designs, conventional micro-machined technologies are not able to satisfy their required 3D manufacturing resolution. In recent years, there has been increasing interest in using additive manufacturing (3D printing) technology to fabricate sensors and actuators due to rapid prototyping, low-cost manufacturing processes, customized features and the ability to create complex 3D geometries at micrometre scale. This work combines the ultrasonic diaphragm transducer design with a novel stereolithographic additive manufacturing technique. This includes developing a multi-material fabrication process using a commercial digital light processing printer and optimizing the formula of custom-built functional (conductive and piezoelectric) materials. A set of capacitive acoustic and ultrasonic transducers was fabricated using the additive manufacturing technology. The additive manufactured capacitive transducers have a receiving sensitivity of up to 0.4 mV/Pa at their resonant frequency.Air-coupled ultrasound is a non-contact technology that has become increasingly common in Non Destructive Evaluation (NDE) and material evaluation. Normally, the bandwidth of a conventional transducer can be enhanced, but with a cost to its sensitivity. However, low sensitivity is very disadvantageous in air-coupled devices. This thesis proposes a methodology for improving the bandwidth of an air-coupled micro-machined ultrasonic transducer (MUT) without sensitivity loss by connecting a number of resonating pipes of various length to a cavity in the backplate. This design is inspired by the pipe organ musical instrument, where the resonant frequency (pitch) of each pipe is mainly determined by its length. The −6 dB bandwidth of the "pipe organ" inspired air-coupled transducer is 55.7% and 58.5% in transmitting and receiving modes, respectively, which is ∼5 times wider than a custom-built standard device. After validating the concept via a series of single element low-frequency prototypes, two improved designs: the multiple element and the high-frequency single element pipe organ transducers were simulated in order to tailor the pipe organ design to NDE applications.Although the simulated and experimental performance of the pipe organ inspired transducers are proved to be significantly better than the conventional designs, conventional micro-machined technologies are not able to satisfy their required 3D manufacturing resolution. In recent years, there has been increasing interest in using additive manufacturing (3D printing) technology to fabricate sensors and actuators due to rapid prototyping, low-cost manufacturing processes, customized features and the ability to create complex 3D geometries at micrometre scale. This work combines the ultrasonic diaphragm transducer design with a novel stereolithographic additive manufacturing technique. This includes developing a multi-material fabrication process using a commercial digital light processing printer and optimizing the formula of custom-built functional (conductive and piezoelectric) materials. A set of capacitive acoustic and ultrasonic transducers was fabricated using the additive manufacturing technology. The additive manufactured capacitive transducers have a receiving sensitivity of up to 0.4 mV/Pa at their resonant frequency

    Multiphase flow measurement in the slug regime using ultrasonic measurement techniques and slug closure model

    Get PDF
    Multiphase flow in the oil and gas industry covers a wide range of flows. Thus, over the last decade, the investigation, development and use of multiphase flow metering system have been a major focus for the industry worldwide. However, these meters do not perform well in slug flow conditions. The present work involves experimental investigations of multiphase flow measurement under slug flow conditions. A two-phase gas/liquid facility was designed and constructed at Cranfield University. It consisted of a 0.05 m diameter 25 m long horizontal pipeline with the necessary instrumentation. An ultrasonic multiphase metering concept has been proposed and investigated. The concept was based on the combination of non-invasive and non-intrusive ultrasonic sensors and a slug closure model. The slug closure model was based on the "slug unit" model to infer the gas and liquid phase volumetric flowrates. The slug characteristics obtained by non-invasive and non-intrusive ultrasonic techniques were inputs to slug closure model which calculates the factors KI (Liquid), K2 (Liquid), K3 (Gas) and K4 (Gas). These factors are function of the slip ratio in the slug body, flow profile (CO), drift velocity (Vd), liquid holdup and gas void fraction in slug body, slug length, film length, and the total length of the slug unit. Based on ultrasonic sensor measurements, the slug translational velocity was estimated and the slug closure model then calculates the gas and liquid phase volumetric flowrates. Air water slug flow data were gathered and processed for a range of superficial velocities VSL=0.3 to 1.03 ms'1 and VsG=0.6 to 3.01 ms'1. The overall goal of a 5% relative error metering for both phases was not achieved for the conditions tested. The liquid phase percentage errors were from -63.6% to 45.4% while the gas phase percentage errors were from 42% to -14.6%. Key words: slug flow, slug characteristics, slug closure model, non-invasive ultrasonic, non-intrusive ultrasonic, clamp-on transit time ultrasonic flowmeter

    Industrial flow measurement

    Get PDF
    This thesis discusses the intrinsic worth of a published work, ‘Industrial Flow Measurement’ (Appendix A), a handbook written and revised by the author over a period of 30 years. The author first discusses the need to measure flow and then moves on to the raison d’être of the handbook before looking at a brief history of flow measurement. Although not claiming that any single attribute of the handbook is unique, the author nonetheless postulates that because it incorporates several distinctive features, at a number of different levels, these agents combine to make it one-of-a- kind. The author moves on to an overview of existing flow metering technologies discussed within the handbook. Finally, he looks at what he considers is a major gap in the collected body of knowledge – the field of multiphase and water-cut metering and provides a justification, not only for its inclusion in the future but for future investigation

    The use of ultrasound for detecting particles suspended in lubricant and hydraulic fluids

    Get PDF
    Imperial Users onl
    • …
    corecore