680 research outputs found

    On the use of NAND flash memory in high-performance relational databases

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 47-49).High-density NAND flash storage has become relatively inexpensive due to the popularity of various consumer electronics. Recently, several manufacturers have released IDE-compatible NAND flash-based drives in sizes up to 64 GB at reasonable (sub-$1000) prices. Because flash is significantly more durable than mechanical hard drives and requires considerably less energy, there is some speculation that large data centers will adopt these devices. As database workloads make up a substantial fraction of the processing done by data centers, it is interesting to ask how switching to flash-based storage will affect the performance of database systems. We evaluate this question using IDE-based flash drives from two major manufacturers. We measure their read and write performance and find that flash has excellent random read performance, acceptable sequential read performance, and quite poor write performance compared to conventional IDE disks. We then consider how standard database algorithms are affected by these performance characteristics and find that the fast random read capability dramatically improves the performance of secondary indexes and index-based join algorithms. We next investigate using logstructured filesystems to mitigate the poor write performance of flash and find an 8.2x improvement in random write performance, but at the cost of a 3.7x decrease in random read performance. Finally, we study techniques for exploiting the inherent parallelism of multiple-chip flash devices, and we find that adaptive coding strategies can yield a 2x performance improvement over static ones. We conclude that in many cases flash disk performance is still worse than on traditional drives and that current flash technology may not yet be mature enough for widespread database adoption if performance is a dominant factor. Finally, we briefly speculate how this landscape may change based on expected performance of next-generation flash memories.by Daniel Myers.S.M

    Shingled Magnetic Recording disks for Mass Storage Systems

    Get PDF
    Disk drives have seen a dramatic increase in storage density over the last five decades, but to continue the growth seems difficult if not impossible because of physical limitations. One way to increase storage density is using a shingled magnetic recording (SMR) disk. Shingled writing is a promising technique that trades off the inability to update in-place for narrower tracks and thus a much higher data density. It is particularly appealing as it can be adopted while utilizing essentially the same physical recording mechanisms currently in use. Because of its manner of writing, an SMR disk would be unable to update a written track without overwriting neighboring tracks, potentially requiring the rewrite of all the tracks to the end of a band where the end of a band is an area left unwritten to allow for a non-overlapped final track. Random reads are still possible on such devices, but the handling of writes becomes particularly critical. In this manuscript, we first look at a variety of potential workloads, drawn from real-world traces, and evaluate their impact on SMR disk models. Later, we evaluate the behavior of SMR disks when used in an array configuration or when faced with heavily interleaved workloads. Specifically, we demonstrate the dramatically different effects that different workloads can have upon the opposing approaches of remapping and restoring blocks, and how write-heavy workloads can (under the right conditions, and contrary to intuition) result in a performance advantage for an SMR disk

    Priority-Driven Differentiated Performance for NoSQL Database-As-a-Service

    Get PDF
    Designing data stores for native Cloud Computing services brings a number of challenges, especially if the Cloud Provider wants to offer database services capable of controlling the response time for specific customers. These requests may come from heterogeneous data-driven applications with conflicting responsiveness requirements. For instance, a batch processing workload does not require the same level of responsiveness as a time-sensitive one. Their coexistence may interfere with the responsiveness of the time-sensitive workload, such as online video gaming, virtual reality, and cloud-based machine learning. This paper presents a modification to the popular MongoDB NoSQL database to enable differentiated per-user/request performance on a priority basis by leveraging CPU scheduling and synchronization mechanisms available within the Operating System. This is achieved with minimally invasive changes to the source code and without affecting the performance and behavior of the database when the new feature is not in use. The proposed extension has been integrated with the access-control model of MongoDB for secure and controlled access to the new capability. Extensive experimentation with realistic workloads demonstrates how the proposed solution is able to reduce the response times for high-priority users/requests, with respect to lower-priority ones, in scenarios with mixed-priority clients accessing the data store
    • …
    corecore