828 research outputs found

    Disjunctive Total Domination in Graphs

    Full text link
    Let GG be a graph with no isolated vertex. In this paper, we study a parameter that is a relaxation of arguably the most important domination parameter, namely the total domination number, γt(G)\gamma_t(G). A set SS of vertices in GG is a disjunctive total dominating set of GG if every vertex is adjacent to a vertex of SS or has at least two vertices in SS at distance2 from it. The disjunctive total domination number, γtd(G)\gamma^d_t(G), is the minimum cardinality of such a set. We observe that γtd(G)γt(G)\gamma^d_t(G) \le \gamma_t(G). We prove that if GG is a connected graph of ordern8n \ge 8, then γtd(G)2(n1)/3\gamma^d_t(G) \le 2(n-1)/3 and we characterize the extremal graphs. It is known that if GG is a connected claw-free graph of ordernn, then γt(G)2n/3\gamma_t(G) \le 2n/3 and this upper bound is tight for arbitrarily largenn. We show this upper bound can be improved significantly for the disjunctive total domination number. We show that if GG is a connected claw-free graph of ordern>10n > 10, then γtd(G)4n/7\gamma^d_t(G) \le 4n/7 and we characterize the graphs achieving equality in this bound.Comment: 23 page

    Algorithmic aspects of disjunctive domination in graphs

    Full text link
    For a graph G=(V,E)G=(V,E), a set DVD\subseteq V is called a \emph{disjunctive dominating set} of GG if for every vertex vVDv\in V\setminus D, vv is either adjacent to a vertex of DD or has at least two vertices in DD at distance 22 from it. The cardinality of a minimum disjunctive dominating set of GG is called the \emph{disjunctive domination number} of graph GG, and is denoted by γ2d(G)\gamma_{2}^{d}(G). The \textsc{Minimum Disjunctive Domination Problem} (MDDP) is to find a disjunctive dominating set of cardinality γ2d(G)\gamma_{2}^{d}(G). Given a positive integer kk and a graph GG, the \textsc{Disjunctive Domination Decision Problem} (DDDP) is to decide whether GG has a disjunctive dominating set of cardinality at most kk. In this article, we first propose a linear time algorithm for MDDP in proper interval graphs. Next we tighten the NP-completeness of DDDP by showing that it remains NP-complete even in chordal graphs. We also propose a (ln(Δ2+Δ+2)+1)(\ln(\Delta^{2}+\Delta+2)+1)-approximation algorithm for MDDP in general graphs and prove that MDDP can not be approximated within (1ϵ)ln(V)(1-\epsilon) \ln(|V|) for any ϵ>0\epsilon>0 unless NP \subseteq DTIME(VO(loglogV))(|V|^{O(\log \log |V|)}). Finally, we show that MDDP is APX-complete for bipartite graphs with maximum degree 33
    corecore