1,427 research outputs found

    On the effects of firing memory in the dynamics of conjunctive networks

    Full text link
    Boolean networks are one of the most studied discrete models in the context of the study of gene expression. In order to define the dynamics associated to a Boolean network, there are several \emph{update schemes} that range from parallel or \emph{synchronous} to \emph{asynchronous.} However, studying each possible dynamics defined by different update schemes might not be efficient. In this context, considering some type of temporal delay in the dynamics of Boolean networks emerges as an alternative approach. In this paper, we focus in studying the effect of a particular type of delay called \emph{firing memory} in the dynamics of Boolean networks. Particularly, we focus in symmetric (non-directed) conjunctive networks and we show that there exist examples that exhibit attractors of non-polynomial period. In addition, we study the prediction problem consisting in determinate if some vertex will eventually change its state, given an initial condition. We prove that this problem is {\bf PSPACE}-complete

    Turning block-sequential automata networks into smaller parallel networks with isomorphic limit dynamics

    Full text link
    We state an algorithm that, given an automata network and a block-sequential update schedule, produces an automata network of the same size or smaller with the same limit dynamics under the parallel update schedule. Then, we focus on the family of automata cycles which share a unique path of automata, called tangential cycles, and show that a restriction of our algorithm allows to reduce any instance of these networks under a block-sequential update schedule into a smaller parallel network of the family and to characterize the number of reductions operated while conserving their limit dynamics. We also show that any tangential cycles reduced by our main algorithm are transformed into a network whose size is that of the largest cycle of the initial network. We end by showing that the restricted algorithm allows the direct characterization of block-sequential double cycles as parallel ones.Comment: Accepted at CIE 202

    Fast Distributed Multi-agent Plan Execution with Dynamic Task Assignment and Scheduling

    Get PDF
    An essential quality of a good partner is her responsiveness to other team members. Recent work in dynamic plan execution exhibits elements of this quality through the ability to adapt to the temporal uncertainties of others agents and the environment. However, a good teammate also has the ability to adapt on-the-fly through task assignment. We generalize the framework of dynamic execution to perform plan execution with dynamic task assignment as well as scheduling. This paper introduces Chaski, a multi-agent executive for scheduling temporal plans with online task assignment. Chaski enables an agent to dynamically update its plan in response to disturbances in task assignment and the schedule of other agents. The agent then uses the updated plan to choose, schedule and execute actions that are guaranteed to be temporally consistent and logically valid within the multi-agent plan. Chaski is made efficient through an incremental algorithm that compactly encodes all scheduling policies for all possible task assignments. We apply Chaski to perform multi-manipulator coordination using two Barrett Arms within the authors' hardware testbed. We empirically demonstrate up to one order of magnitude improvements in execution latency and solution compactness compared to prior art

    Capacity Planning and Leadtime management

    Get PDF
    In this paper we discuss a framework for capacity planning and lead time management in manufacturing companies, with an emphasis on the machine shop. First we show how queueing models can be used to find approximations of the mean and the variance of manufacturing shop lead times. These quantities often serve as a basis to set a fixed planned lead time in an MRP-controlled environment. A major drawback of a fixed planned lead time is the ignorance of the correlation between actual work loads and the lead times that can be realized under a limited capacity flexibility. To overcome this problem, we develop a method that determines the earliest possible completion time of any arriving job, without sacrificing the delivery performance of any other job in the shop. This earliest completion time is then taken to be the delivery date and thereby determines a workload-dependent planned lead time. We compare this capacity planning procedure with a fixed planned lead time approach (as in MRP), with a procedure in which lead times are estimated based on the amount of work in the shop, and with a workload-oriented release procedure. Numerical experiments so far show an excellent performance of the capacity planning procedure

    Optimising Flexibility of Temporal Problems with Uncertainty

    Get PDF
    Temporal networks have been applied in many autonomous systems. In real situations, we cannot ignore the uncertain factors when using those autonomous systems. Achieving robust schedules and temporal plans by optimising flexibility to tackle the uncertainty is the motivation of the thesis. This thesis focuses on the optimisation problems of temporal networks with uncertainty and controllable options in the field of Artificial Intelligence Planning and Scheduling. The goal of this thesis is to construct flexibility and robustness metrics for temporal networks under the constraints of different levels of controllability. Furthermore, optimising flexibility for temporal plans and schedules to achieve robust solutions with flexible executions. When solving temporal problems with uncertainty, postponing decisions according to the observations of uncertain events enables flexible strategies as the solutions instead of fixed schedules or plans. Among the three levels of controllability of the Simple Temporal Problem with Uncertainty (STPU), a problem is dynamically controllable if there is a successful dynamic strategy such that every decision in it is made according to the observations of past events. In the thesis, we make the following contributions. (1) We introduce an optimisation model for STPU based on the existing dynamic controllability checking algorithms. Some flexibility and robustness measures are introduced based on the model. (2) We extend the definition and verification algorithm of dynamic controllability to temporal problems with controllable discrete variables and uncertainty, which is called Controllable Conditional Temporal Problems with Uncertainty (CCTPU). An entirely dynamically controllable strategy of CCTPU consists of both temporal scheduling and variable assignments being dynamically decided, which maximize the flexibility of the execution. (3) We introduce optimisation models of CCTPU under fully dynamic controllability. The optimisation models aim to answer the questions how flexible, robust or controllable a schedule or temporal plan is. The experiments show that making decisions dynamically can achieve better objective values than doing statically. The thesis also contributes to the field of AI planning and scheduling by introducing robustness metrics of temporal networks, proposing an envelope-based algorithm that can check dynamic controllability of temporal networks with uncertainty and controllable discrete decisions, evaluating improvements from making decisions strongly controllable to temporally dynamically controllable and fully dynamically controllable and comparing the runtime of different implementations to present the scalability of dynamically controllable strategies

    A novel class of scheduling policies for the stochastic resource-constrained project scheduling problem.

    Get PDF
    We study the resource-constrained project scheduling problem with stochastic activity durations. We introduce a new class of scheduling policies for this problem, which make a number of a-priori sequencing decisions in a pre-processing phase, while the remaining decisions are made dynamically during project execution. The pre-processing decisions entail the addition of precedence constraints to the scheduling instance, hereby resolving some potential resource conflicts. We compare the performance of this new class with existing scheduling policies for the stochastic resource-constrained project scheduling problem, and we observe that the new class is significantly better when the variability in the activity durations is medium to high.Project scheduling; Uncertainty; Stochastic activity durations; Scheduling policies;

    Models for robust resource allocation in project scheduling.

    Get PDF
    The vast majority of resource-constrained project scheduling efforts assumes complete information about the scheduling problem to be solved and a static deterministic environment within which the pre-computed baseline schedule will be executed. In reality, however, project activities are subject to considerable uncertainty which generally leads to numerous schedule disruptions. In this paper, we present a resource allocation model that protects the makespan of a given baseline schedule against activity duration variability. A branch-and-bound algorithm is developed that solves the proposed robust resource allocation problem in exact and approximate formulations. The procedure relies on constraint propagation during its search. We report on computational results obtained on a set of benchmark problems.Model; Resource allocation; Scheduling;
    corecore