62 research outputs found

    Disjunctive Probabilistic Modal Logic is Enough for Bisimilarity on Reactive Probabilistic Systems

    Get PDF
    Larsen and Skou characterized probabilistic bisimilarity over reactive probabilistic systems with a logic including true, negation, conjunction, and a diamond modality decorated with a probabilistic lower bound. Later on, Desharnais, Edalat, and Panangaden showed that negation is not necessary to characterize the same equivalence. In this paper, we prove that the logical characterization holds also when conjunction is replaced by disjunction, with negation still being not necessary. To this end, we introduce reactive probabilistic trees, a fully abstract model for reactive probabilistic systems that allows us to demonstrate expressiveness of the disjunctive probabilistic modal logic, as well as of the previously mentioned logics, by means of a compactness argument.Comment: Aligned content with version accepted at ICTCS 2016: fixed minor typos, added reference, improved definitions in Section 3. Still 10 pages in sigplanconf forma

    Logical Characterizations of Behavioral Relations on Transition Systems of Probability Distributions

    Get PDF
    Probabilistic nondeterministic processes are commonly modeled as probabilistic LTSs (PLTSs). A number of logical characterizations of the main behavioral relations on PLTSs have been studied. In particular, Parma and Segala [2007] and Hermanns et al. [2011] define a probabilistic Hennessy-Milner logic interpreted over probability distributions, whose corresponding logical equivalence/preorder when restricted to Dirac distributions coincide with standard bisimulation/simulation between the states of a PLTS. This result is here extended by studying the full logical equivalence/preorder between (possibly non-Dirac) distributions in terms of a notion of bisimulation/simulation defined on a LTS whose states are distributions (dLTS). We show that the well-known spectrum of behavioral relations on nonprobabilistic LTSs as well as their corresponding logical characterizations in terms of Hennessy-Milner logic scales to the probabilistic setting when considering dLTSs

    Modular Construction of Complete Coalgebraic Logics

    Get PDF
    We present a modular approach to defining logics for a wide variety of state-based systems. The systems are modelled by coalgebras, and we use modal logics to specify their observable properties. We show that the syntax, semantics and proof systems associated to such logics can all be derived in a modular fashion. Moreover, we show that the logics thus obtained inherit soundness, completeness and expressiveness properties from their building blocks. We apply these techniques to derive sound, complete and expressive logics for a wide variety of probabilistic systems, for which no complete axiomatisation has been obtained so far

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 22nd International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2019, which took place in Prague, Czech Republic, in April 2019, held as part of the European Joint Conference on Theory and Practice of Software, ETAPS 2019. The 29 papers presented in this volume were carefully reviewed and selected from 85 submissions. They deal with foundational research with a clear significance for software science

    Behavioral Equivalences for Higher-Order Languages with Probabilities

    Get PDF
    Higher-order languages, whose paradigmatic example is the lambda-calculus, are languages with powerful operators that are capable of manipulating and exchanging programs themselves. This thesis studies behavioral equivalences for programs with higher-order and probabilistic features. Behavioral equivalence is formalized as a contextual, or testing, equivalence, and two main lines of research are pursued in the thesis. The first part of the thesis focuses on contextual equivalence as a way of investigating the expressiveness of different languages. The discriminating powers offered by higher-order concurrent languages (Higher-Order pi-calculi) are compared with those offered by higher-order sequential languages (à la lambda-calculus) and by first-order concurrent languages (à la CCS). The comparison is carried out by examining the contextual equivalences induced by the languages on two classes of first-order processes, namely nondeterministic and probabilistic processes. As a result, the spectrum of the discriminating powers of several varieties of higher-order and first-order languages is obtained, both in a nondeterministic and in a probabilistic setting. The second part of the thesis is devoted to proof techniques for contextual equivalence in probabilistic lambda-calculi. Bisimulation-based proof techniques are studied, with particular focus on deriving bisimulations that are fully abstract for contextual equivalence (i.e., coincide with it). As a first result, full abstraction of applicative bisimilarity and similarity are proved for a call-by-value probabilistic lambda-calculus with a parallel disjunction operator. Applicative bisimulations are however known not to scale to richer languages. Hence, more robust notions of bisimulations for probabilistic calculi are considered, in the form of environmental bisimulations. Environmental bisimulations are defined for pure call-by-name and call-by-value probabilistic lambda-calculi, and for a (call-by-value) probabilistic lambda-calculus extended with references (i.e., a store). In each case, full abstraction results are derived

    Improved verification methods for concurrent systems

    Get PDF

    Refinement checking on parametric modal transition systems

    Get PDF
    Modal transition systems (MTS) is a well-studied specification formalism of reactive systems supporting a step-wise refinement methodology. Despite its many advantages, the formalism as well as its currently known extensions are incapable of expressing some practically needed aspects in the refinement process like exclusive, conditional and persistent choices. We introduce a new model called parametric modal transition systems (PMTS) together with a general modal refinement notion that overcomes many of the limitations. We investigate the computational complexity of modal and thorough refinement checking on PMTS and its subclasses and provide a direct encoding of the modal refinement problem into quantified Boolean formulae, allowing us to employ state-of-the-art QBF solvers for modal refinement checking. The experiments we report on show that the feasibility of refinement checking is more influenced by the degree of nondeterminism rather than by the syntactic restrictions on the types of formulae allowed in the description of the PMTS
    corecore