322 research outputs found

    Disjoint Paired-Dominating sets in Cubic Graphs

    Get PDF
    A paired-dominating set of a graph G is a dominating set D with the additional requirement that the induced subgraph G[D] contains a perfect matching. We prove that the vertex set of every claw-free cubic graph can be partitioned into two paired-dominating sets

    Locating-dominating sets and identifying codes in graphs of girth at least 5

    Full text link
    Locating-dominating sets and identifying codes are two closely related notions in the area of separating systems. Roughly speaking, they consist in a dominating set of a graph such that every vertex is uniquely identified by its neighbourhood within the dominating set. In this paper, we study the size of a smallest locating-dominating set or identifying code for graphs of girth at least 5 and of given minimum degree. We use the technique of vertex-disjoint paths to provide upper bounds on the minimum size of such sets, and construct graphs who come close to meet these bounds.Comment: 20 pages, 9 figure

    Upper paired domination versus upper domination

    Full text link
    A paired dominating set PP is a dominating set with the additional property that PP has a perfect matching. While the maximum cardainality of a minimal dominating set in a graph GG is called the upper domination number of GG, denoted by Γ(G)\Gamma(G), the maximum cardinality of a minimal paired dominating set in GG is called the upper paired domination number of GG, denoted by Γpr(G)\Gamma_{pr}(G). By Henning and Pradhan (2019), we know that Γpr(G)≤2Γ(G)\Gamma_{pr}(G)\leq 2\Gamma(G) for any graph GG without isolated vertices. We focus on the graphs satisfying the equality Γpr(G)=2Γ(G)\Gamma_{pr}(G)= 2\Gamma(G). We give characterizations for two special graph classes: bipartite and unicyclic graphs with Γpr(G)=2Γ(G)\Gamma_{pr}(G)= 2\Gamma(G) by using the results of Ulatowski (2015). Besides, we study the graphs with Γpr(G)=2Γ(G)\Gamma_{pr}(G)= 2\Gamma(G) and a restricted girth. In this context, we provide two characterizations: one for graphs with Γpr(G)=2Γ(G)\Gamma_{pr}(G)= 2\Gamma(G) and girth at least 6 and the other for C3C_3-free cactus graphs with Γpr(G)=2Γ(G)\Gamma_{pr}(G)= 2\Gamma(G). We also pose the characterization of the general case of C3C_3-free graphs with Γpr(G)=2Γ(G)\Gamma_{pr}(G)= 2\Gamma(G) as an open question
    • …
    corecore