2,618 research outputs found

    On the non-efficient PAC learnability of conjunctive queries

    Get PDF
    This note serves three purposes: (i) we provide a self-contained exposition of the fact that conjunctive queries are not efficiently learnable in the Probably-Approximately-Correct (PAC) model, paying clear attention to the complicating fact that this concept class lacks the polynomial-size fitting property, a property that is tacitly assumed in much of the computational learning theory literature; (ii) we establish a strong negative PAC learnability result that applies to many restricted classes of conjunctive queries (CQs), including acyclic CQs for a wide range of notions of acyclicity; (iii) we show that CQs (and UCQs) are efficiently PAC learnable with membership queries.<p/

    Stretching demi-bits and nondeterministic-secure pseudorandomness

    Get PDF
    We develop the theory of cryptographic nondeterministic-secure pseudorandomness beyond the point reached by Rudich's original work [25], and apply it to draw new consequences in average-case complexity and proof complexity. Specifically, we show the following: Demi-bit stretch: Super-bits and demi-bits are variants of cryptographic pseudorandom generators which are secure against nondeterministic statistical tests [25]. They were introduced to rule out certain approaches to proving strong complexity lower bounds beyond the limitations set out by the Natural Proofs barrier of Razborov and Rudich [23]. Whether demi-bits are stretchable at all had been an open problem since their introduction. We answer this question affirmatively by showing that: every demi-bit b : {0, 1}n → {0, 1}n+1 can be stretched into sublinear many demi-bits b′: {0, 1}n → {0, 1}n+nc , for every constant 0 < c < 1. Average-case hardness: Using work by Santhanam [26], we apply our results to obtain new averagecase Kolmogorov complexity results: we show that Kpoly[n-O(1)] is zero-error average-case hard against NP/poly machines iff Kpoly[n-o(n)] is, where for a function s(n) : N → N, Kpoly[s(n)] denotes the languages of all strings x ∈ {0, 1}n for which there are (fixed) polytime Turing machines of description-length at most s(n) that output x. Characterising super-bits by nondeterministic unpredictability: In the deterministic setting, Yao [31] proved that super-polynomial hardness of pseudorandom generators is equivalent to ("nextbit") unpredictability. Unpredictability roughly means that given any strict prefix of a random string, it is infeasible to predict the next bit. We initiate the study of unpredictability beyond the deterministic setting (in the cryptographic regime), and characterise the nondeterministic hardness of generators from an unpredictability perspective. Specifically, we propose four stronger notions of unpredictability: NP/poly-unpredictability, coNP/poly-unpredictability, ∩-unpredictability and ∪unpredictability, and show that super-polynomial nondeterministic hardness of generators lies between ∩-unpredictability and ∪unpredictability. Characterising super-bits by nondeterministic hard-core predicates: We introduce a nondeterministic variant of hard-core predicates, called super-core predicates. We show that the existence of a super-bit is equivalent to the existence of a super-core of some non-shrinking function. This serves as an analogue of the equivalence between the existence of a strong pseudorandom generator and the existence of a hard-core of some one-way function [8, 12], and provides a first alternative characterisation of super-bits. We also prove that a certain class of functions, which may have hard-cores, cannot possess any super-core

    Fragments and frame classes:Towards a uniform proof theory for modal fixed point logics

    Get PDF
    This thesis studies the proof theory of modal fixed point logics. In particular, we construct proof systems for various fragments of the modal mu-calculus, interpreted over various classes of frames. With an emphasis on uniform constructions and general results, we aim to bring the relatively underdeveloped proof theory of modal fixed point logics closer to the well-established proof theory of basic modal logic. We employ two main approaches. First, we seek to generalise existing methods for basic modal logic to accommodate fragments of the modal mu-calculus. We use this approach for obtaining Hilbert-style proof systems. Secondly, we adapt existing proof systems for the modal mu-calculus to various classes of frames. This approach yields proof systems which are non-well-founded, or cyclic.The thesis starts with an introduction and some mathematical preliminaries. In Chapter 3 we give hypersequent calculi for modal logic with the master modality, building on work by Ori Lahav. This is followed by an Intermezzo, where we present an abstract framework for cyclic proofs, in which we give sufficient conditions for establishing the bounded proof property. In Chapter 4 we generalise existing work on Hilbert-style proof systems for PDL to the level of the continuous modal mu-calculus. Chapter 5 contains a novel cyclic proof system for the alternation-free two-way modal mu-calculus. Finally, in Chapter 6, we present a cyclic proof system for Guarded Kleene Algebra with Tests and take a first step towards using it to establish the completeness of an algebraic counterpart

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well

    Games with Trading of Control

    Get PDF

    Automatic Generation of Personalized Recommendations in eCoaching

    Get PDF
    Denne avhandlingen omhandler eCoaching for personlig livsstilsstøtte i sanntid ved bruk av informasjons- og kommunikasjonsteknologi. Utfordringen er å designe, utvikle og teknisk evaluere en prototyp av en intelligent eCoach som automatisk genererer personlige og evidensbaserte anbefalinger til en bedre livsstil. Den utviklede løsningen er fokusert på forbedring av fysisk aktivitet. Prototypen bruker bærbare medisinske aktivitetssensorer. De innsamlede data blir semantisk representert og kunstig intelligente algoritmer genererer automatisk meningsfulle, personlige og kontekstbaserte anbefalinger for mindre stillesittende tid. Oppgaven bruker den veletablerte designvitenskapelige forskningsmetodikken for å utvikle teoretiske grunnlag og praktiske implementeringer. Samlet sett fokuserer denne forskningen på teknologisk verifisering snarere enn klinisk evaluering.publishedVersio

    A Symbolic Language for Interpreting Decision Trees

    Full text link
    The recent development of formal explainable AI has disputed the folklore claim that "decision trees are readily interpretable models", showing different interpretability queries that are computationally hard on decision trees, as well as proposing different methods to deal with them in practice. Nonetheless, no single explainability query or score works as a "silver bullet" that is appropriate for every context and end-user. This naturally suggests the possibility of "interpretability languages" in which a wide variety of queries can be expressed, giving control to the end-user to tailor queries to their particular needs. In this context, our work presents ExplainDT, a symbolic language for interpreting decision trees. ExplainDT is rooted in a carefully constructed fragment of first-ordered logic that we call StratiFOILed. StratiFOILed balances expressiveness and complexity of evaluation, allowing for the computation of many post-hoc explanations--both local (e.g., abductive and contrastive explanations) and global ones (e.g., feature relevancy)--while remaining in the Boolean Hierarchy over NP. Furthermore, StratiFOILed queries can be written as a Boolean combination of NP-problems, thus allowing us to evaluate them in practice with a constant number of calls to a SAT solver. On the theoretical side, our main contribution is an in-depth analysis of the expressiveness and complexity of StratiFOILed, while on the practical side, we provide an optimized implementation for encoding StratiFOILed queries as propositional formulas, together with an experimental study on its efficiency

    Inconsistency Handling in Prioritized Databases with Universal Constraints: Complexity Analysis and Links with Active Integrity Constraints

    Full text link
    This paper revisits the problem of repairing and querying inconsistent databases equipped with universal constraints. We adopt symmetric difference repairs, in which both deletions and additions of facts can be used to restore consistency, and suppose that preferred repair actions are specified via a binary priority relation over (negated) facts. Our first contribution is to show how existing notions of optimal repairs, defined for simpler denial constraints and repairs solely based on fact deletion, can be suitably extended to our richer setting. We next study the computational properties of the resulting repair notions, in particular, the data complexity of repair checking and inconsistency-tolerant query answering. Finally, we clarify the relationship between optimal repairs of prioritized databases and repair notions introduced in the framework of active integrity constraints. In particular, we show that Pareto-optimal repairs in our setting correspond to founded, grounded and justified repairs w.r.t. the active integrity constraints obtained by translating the prioritized database. Our study also yields useful insights into the behavior of active integrity constraints.Comment: This is an extended version of a paper appearing at the 20th International Conference on Principles of Knowledge Representation and Reasoning (KR 2023). 28 page
    corecore