16 research outputs found

    COMPREHENSIVE PERFORMANCE EVALUATION AND OPTIMIZATION OF HIGH THROUGHPUT SCANNING MICROSCOPY FOR METAPHASE CHROMOSOME IMAGING

    Get PDF
    Specimen scanning is a critically important tool for diagnosing the genetic diseases in today’s hospital. In order to reduce the clinician’s work load, many investigations have been conducted on developing automatic sample screening techniques in the last twenty years. However, the currently commercialized scanners can only accomplish the low magnification sample screening (i.e. under 10× objective lens), and still require clinicians’ manual operation for the high magnification image acquisition and confirmation (i.e. under 100× objective lens). Therefore, a new high throughput scanning method is recently proposed to continuously scan the specimen and select the clinically analyzable cells. In the medical imaging lab, University of Oklahoma, a prototype of high throughput scanning microscopy is built based on the time delay integration (TDI) line scanning detector. This new scanning method, however, raises several technical challenges for evaluating and optimizing the performance. First, we need to use the clinical samples to compare this new prototype with the conventional two-step scanners. Second, the system DOF should be investigated to assess the impact on clinically analyzable metaphase chromosomes. Further, in order to achieve the optimal results, we should carefully assess and select the auto-focusing methods for the high throughput scanning system. Third, we need to optimize the scanning scheme by finding the optimal trade-off between the image quality and efficiency. Finally, analyzing the performance of the various image features is meaningful for improving the performance of the computer aided detection (CAD) scheme under the high throughput scanning condition. The purpose of this dissertation is to comprehensively evaluate the performance of the high throughput scanning prototype. The first technical challenge was solved by the first investigation, which utilized a number of 9 slides from five patients to compare the detecting performance of the high throughput scanning prototype. The second and third studies were performed for the second technical challenge. In the second study, we first theoretically computed the DOF of our prototype and then experimentally measured the system DOF. After that, the DOF impact was analyzed using cytogenetic images from different pathological specimens, under the condition of two objective lenses of 60× (dry, N.A. = 0.95) and 100× (oil, N.A. = 1.25). In the third study, five auto-focusing functions were investigated using metaphase chromosome images. The performance of these different functions was compared using four widely accepted criteria. The fourth and fifth investigations were designed for the third technical challenge. The fourth study objectively assessed chromosome band sharpness by a gradient sharpness function. The sharpness of the images captured from standard resolution target and several pathological chromosomes was objectively evaluated by the gradient sharpness function. The fifth study presented a new slide scanning scheme, which only applies the auto-focusing operations on limited locations. The focusing position was adjusted very quickly by linear interpolation for the other locations. The sixth study was aimed for the fourth technical challenge. The study investigated 9 different feature extraction methods for the CAD modules applied on our high throughput scanning prototype. A certain amount of images were first acquired from 200 bone marrow cells. Then the tested features were performed on these images and the images containing clinically meaningful chromosomes were selected using each feature individually. The identifying accuracy of each feature was evaluated using the receiver operating characteristic (ROC) method. In this dissertation, we have the following results. First, in most cases, we demonstrated that the high throughput scanning can select more diagnostic images depicting clinically analyzable metaphase chromosomes. These selected images were acquired with adequate spatial resolution for the following clinical interpretation. Second, our results showed that, for the commonly used pathological specimens, the metaphase chromosome band patterns are clinically recognizable when these chromosomes were obtained within 1.5 or 1.0 μm away from the focal plane, under the condition of applying the two 60× or 100× objective lenses, respectively. In addition, when scanning bone marrow and blood samples, the Brenner gradient and threshold pixel counting methods can achieve the optimal performance, respectively. Third, we illustrated that the optimal scanning speed of clinical samples is 0.8 mm/s, for which the captured image sharpness is optimized. When scanning the blood sample slide with an auto-focusing distance of 6.9 mm, the prototype obtained an adequate number of analyzable metaphase cells. More useful cells can be captured by increasing the auto-focusing operations, which may be needed for the high accuracy diagnosis. Finally, we found that the optimal feature for the online CAD scheme is the number of the labeled regions. When applying the offline CAD scheme, the satisfactory results can be achieved by combining four different features including the number of the labeled regions, average region area, average region pixel value, and the standard deviation of the either region circularity or distance. Although these investigations are encouraging, there exist several limitations. First, the number of the specimens is limited in most of the assessments. Second, some important impacts, such as the DOF of human eye and the sample thickness, are not considered. Third, more recently proposed algorithms and image features are not used for the evaluation. Therefore, several further studies are planned, which may provide more meaningful information for improving the scanning efficiency and image quality. In summary, we believe that the high throughput scanning may be extensively applied for diagnosing genetic diseases in the future

    Artificial neural networks : A comparative study of implementations for human chromosome classification

    Get PDF
    Artificial neural networks are a popular field of artificial intelligence and have commonly been applied to solve many prediction, classification and diagnostic tasks. One such task is the analysis of human chromosomes. This thesis investigates the use of artificial neural networks (ANNs) as automated chromosome classifiers. The investigation involves the thorough analysis of seven different implementation techniques. These include three techniques using artificial neural networks, two techniques using ANN s supported by another method and two techniques not using ANNs. These seven implementations are evaluated according to the classification accuracy achieved and according to their support of important system measures, such as robustness and validity. The results collected show that ANNs perform relatively well in terms of classification accuracy, though other implementations achieved higher results. However, ANNs provide excellent support of essential system measures. This leads to a well-rounded implementation, consisting of a good balance between accuracy and system features, and thus an effective technique for automated human chromosome classification

    EXplainable Artificial Intelligence: enabling AI in neurosciences and beyond

    Get PDF
    The adoption of AI models in medicine and neurosciences has the potential to play a significant role not only in bringing scientific advancements but also in clinical decision-making. However, concerns mounts due to the eventual biases AI could have which could result in far-reaching consequences particularly in a critical field like biomedicine. It is challenging to achieve usable intelligence because not only it is fundamental to learn from prior data, extract knowledge and guarantee generalization capabilities, but also to disentangle the underlying explanatory factors in order to deeply understand the variables leading to the final decisions. There hence has been a call for approaches to open the AI `black box' to increase trust and reliability on the decision-making capabilities of AI algorithms. Such approaches are commonly referred to as XAI and are starting to be applied in medical fields even if not yet fully exploited. With this thesis we aim at contributing to enabling the use of AI in medicine and neurosciences by taking two fundamental steps: (i) practically pervade AI models with XAI (ii) Strongly validate XAI models. The first step was achieved on one hand by focusing on XAI taxonomy and proposing some guidelines specific for the AI and XAI applications in the neuroscience domain. On the other hand, we faced concrete issues proposing XAI solutions to decode the brain modulations in neurodegeneration relying on the morphological, microstructural and functional changes occurring at different disease stages as well as their connections with the genotype substrate. The second step was as well achieved by firstly defining four attributes related to XAI validation, namely stability, consistency, understandability and plausibility. Each attribute refers to a different aspect of XAI ranging from the assessment of explanations stability across different XAI methods, or highly collinear inputs, to the alignment of the obtained explanations with the state-of-the-art literature. We then proposed different validation techniques aiming at practically fulfilling such requirements. With this thesis, we contributed to the advancement of the research into XAI aiming at increasing awareness and critical use of AI methods opening the way to real-life applications enabling the development of personalized medicine and treatment by taking a data-driven and objective approach to healthcare

    Pacific Symposium on Biocomputing 2023

    Get PDF
    The Pacific Symposium on Biocomputing (PSB) 2023 is an international, multidisciplinary conference for the presentation and discussion of current research in the theory and application of computational methods in problems of biological significance. Presentations are rigorously peer reviewed and are published in an archival proceedings volume. PSB 2023 will be held on January 3-7, 2023 in Kohala Coast, Hawaii. Tutorials and workshops will be offered prior to the start of the conference.PSB 2023 will bring together top researchers from the US, the Asian Pacific nations, and around the world to exchange research results and address open issues in all aspects of computational biology. It is a forum for the presentation of work in databases, algorithms, interfaces, visualization, modeling, and other computational methods, as applied to biological problems, with emphasis on applications in data-rich areas of molecular biology.The PSB has been designed to be responsive to the need for critical mass in sub-disciplines within biocomputing. For that reason, it is the only meeting whose sessions are defined dynamically each year in response to specific proposals. PSB sessions are organized by leaders of research in biocomputing's 'hot topics.' In this way, the meeting provides an early forum for serious examination of emerging methods and approaches in this rapidly changing field

    Pertanika Journal of Science & Technology

    Get PDF

    Pertanika Journal of Science & Technology

    Get PDF

    Analysis of Argonaute-Small RNA-Transcription Factor Circuits Controlling Leaf Development

    Get PDF
    Experimental studies of plant development have yielded many insights into gene regulation, revealing interactions between core transcriptional and post-transcriptional regulatory pathways present in all land plants. This work describes a direct connection between the three main small RNA-transcription factor circuits controlling leaf shape dynamics in the reference plant Arabidopsis thaliana. We used a high-throughput yeast 1-hybrid platform to identify factors directly binding the promoter of the highly specialized ARGONAUTE7 silencing factor. Two groups of developmentally significant microRNA-targeted transcription factors were the clearest hits from these screens, but transgenic complementation analysis indicated that their binding sites make only a small contribution to ARGONAUTE7 function, possibly indicating a role in fine tuning. Timelapse imaging methodology developed to quantify these small differences may have broad utility for plant biologists. Our analysis also clarified requirements for polar transcription of ARGONAUTE7. This work has implications for our understanding of patterning in land plants

    Higher-order interactions in single-cell gene expression: towards a cybergenetic semantics of cell state

    Get PDF
    Finding and understanding patterns in gene expression guides our understanding of living organisms, their development, and diseases, but is a challenging and high-dimensional problem as there are many molecules involved. One way to learn about the structure of a gene regulatory network is by studying the interdependencies among its constituents in transcriptomic data sets. These interdependencies could be arbitrarily complex, but almost all current models of gene regulation contain pairwise interactions only, despite experimental evidence existing for higher-order regulation that cannot be decomposed into pairwise mechanisms. I set out to capture these higher-order dependencies in single-cell RNA-seq data using two different approaches. First, I fitted maximum entropy (or Ising) models to expression data by training restricted Boltzmann machines (RBMs). On simulated data, RBMs faithfully reproduced both pairwise and third-order interactions. I then trained RBMs on 37 genes from a scRNA-seq data set of 70k astrocytes from an embryonic mouse. While pairwise and third-order interactions were revealed, the estimates contained a strong omitted variable bias, and there was no statistically sound and tractable way to quantify the uncertainty in the estimates. As a result I next adopted a model-free approach. Estimating model-free interactions (MFIs) in single-cell gene expression data required a quasi-causal graph of conditional dependencies among the genes, which I inferred with an MCMC graph-optimisation algorithm on an initial estimate found by the Peter-Clark algorithm. As the estimates are model-free, MFIs can be interpreted either as mechanistic relationships between the genes, or as substructures in the cell population. On simulated data, MFIs revealed synergy and higher-order mechanisms in various logical and causal dynamics more accurately than any correlation- or information-based quantities. I then estimated MFIs among 1,000 genes, at up to seventh-order, in 20k neurons and 20k astrocytes from two different mouse brain scRNA-seq data sets: one developmental, and one adolescent. I found strong evidence for up to fifth-order interactions, and the MFIs mostly disambiguated direct from indirect regulation by preferentially coupling causally connected genes, whereas correlations persisted across causal chains. Validating the predicted interactions against the Pathway Commons database, gene ontology annotations, and semantic similarity, I found that pairwise MFIs contained different but a similar amount of mechanistic information relative to networks based on correlation. Furthermore, third-order interactions provided evidence of combinatorial regulation by transcription factors and immediate early genes. I then switched focus from mechanism to population structure. Each significant MFI can be assigned a set of single cells that most influence its value. Hierarchical clustering of the MFIs by cell assignment revealed substructures in the cell population corresponding to diverse cell states. This offered a new, purely data-driven view on cell states because the inferred states are not required to localise in gene expression space. Across the four data sets, I found 69 significant and biologically interpretable cell states, where only 9 could be obtained by standard approaches. I identified immature neurons among developing astrocytes and radial glial cells, D1 and D2 medium spiny neurons, D1 MSN subtypes, and cell-cycle related states present across four data sets. I further found evidence for states defined by genes associated to neuropeptide signalling, neuronal activity, myelin metabolism, and genomic imprinting. MFIs thus provide a new, statistically sound method to detect substructure in single-cell gene expression data, identifying cell types, subtypes, or states that can be delocalised in gene expression space and whose hierarchical structure provides a new view on the semantics of cell state. The estimation of the quasi-causal graph, the MFIs, and inference of the associated states is implemented as a publicly available Nextflow pipeline called Stator
    corecore