346 research outputs found

    Causal Disentangled Recommendation Against User Preference Shifts

    Full text link
    Recommender systems easily face the issue of user preference shifts. User representations will become out-of-date and lead to inappropriate recommendations if user preference has shifted over time. To solve the issue, existing work focuses on learning robust representations or predicting the shifting pattern. There lacks a comprehensive view to discover the underlying reasons for user preference shifts. To understand the preference shift, we abstract a causal graph to describe the generation procedure of user interaction sequences. Assuming user preference is stable within a short period, we abstract the interaction sequence as a set of chronological environments. From the causal graph, we find that the changes of some unobserved factors (e.g., becoming pregnant) cause preference shifts between environments. Besides, the fine-grained user preference over categories sparsely affects the interactions with different items. Inspired by the causal graph, our key considerations to handle preference shifts lie in modeling the interaction generation procedure by: 1) capturing the preference shifts across environments for accurate preference prediction, and 2) disentangling the sparse influence from user preference to interactions for accurate effect estimation of preference. To this end, we propose a Causal Disentangled Recommendation (CDR) framework, which captures preference shifts via a temporal variational autoencoder and learns the sparse influence from multiple environments. Specifically, an encoder is adopted to infer the unobserved factors from user interactions while a decoder is to model the interaction generation process. Besides, we introduce two learnable matrices to disentangle the sparse influence from user preference to interactions. Lastly, we devise a multi-objective loss to optimize CDR. Extensive experiments on three datasets show the superiority of CDR.Comment: This paper has been accepted for publication in Transactions on Information System

    Controllable Recommenders using Deep Generative Models and Disentanglement

    Get PDF
    In this paper, we consider controllability as a means to satisfy dynamic preferences of users, enabling them to control recommendations such that their current preference is met. While deep models have shown improved performance for collaborative filtering, they are generally not amenable to fine grained control by a user, leading to the development of methods like deep language critiquing. We propose an alternate view, where instead of keyphrase based critiques, a user is provided 'knobs' in a disentangled latent space, with each knob corresponding to an item aspect. Disentanglement here refers to a latent space where generative factors (here, a preference towards an item category like genre) are captured independently in their respective dimensions, thereby enabling predictable manipulations, otherwise not possible in an entangled space. We propose using a (semi-)supervised disentanglement objective for this purpose, as well as multiple metrics to evaluate the controllability and the degree of personalization of controlled recommendations. We show that by updating the disentangled latent space based on user feedback, and by exploiting the generative nature of the recommender, controlled and personalized recommendations can be produced. Through experiments on two widely used collaborative filtering datasets, we demonstrate that a controllable recommender can be trained with a slight reduction in recommender performance, provided enough supervision is provided. The recommendations produced by these models appear to both conform to a user's current preference and remain personalized.Comment: 10 pages, 1 figur

    Aprendizaje de representaciones desenredadas de escenas a partir de imágenes.

    Get PDF
    Artificial intelligence is at the forefront of a technological revolution, in particular as a key component to build autonomous agents. However, not only training such agents come at a great computational cost, but they also end up lacking human basic abilities like generalization, information extrapolation, knowledge transfer between contexts, or improvisation. To overcome current limitations, agents need a deeper understanding of their environment, and more efficiently learning it from data. There are very recent works that propose novel approaches to learn representations of the world: instead of learning invariant object encodings, they learn to isolate, or disentangle, the different variable properties which form an object. This would not only enable agents to understand object changes as modifications of one of their properties, but also to transfer such knowledge on the properties between different categories. This Master Thesis aims to develop a new machine learning model for disentangling object properties on monocular images of scenes. Our model is based on a state-of-the-art architecture for disentangled representations learning, and our goal is to reduce the computational complexity of the base model while also improving its performance. To achieve this, we will replace a recursive unsupervised segmentation network by an encoder-decoder segmentation network. Furthermore, before training such overparametrized neural model without supervision, we will profit from transfer learning of pre-trained weights from a supervised segmentation task. After developing a first vanilla model, we have tuned it to improve its performance and generalization capability. Then, an experimental validation has been performed on two commonly used synthetic datasets, evaluating both its disentanglement performance and computational efficiency, and on a more realistic dataset to analyze the model capability on real data. The results show that our model outperforms the state of the art, while reducing its computational footprint. Nevertheless, further research is needed to bridge the gap with real world applications.<br /
    • …
    corecore