704 research outputs found

    Comparison of prefrontal atrophy and episodic memory performance in dysexecutive Alzheimer’s disease and behavioural-variant frontotemporal dementia

    Get PDF
    Alzheimer’s disease (AD) sometimes presents with prominent executive dysfunction and associated prefrontal cortex atrophy. The impact of such executive deficits on episodic memory performance as well as their neural correlates in AD, however, remains unclear. The aim of the current study was to investigate episodic memory and brain atrophy in AD patients with relatively spared executive functioning (SEF-AD; n = 12) and AD patients with relatively impaired executive functioning (IEF-AD; n = 23). We also compared the AD subgroups with a group of behavioral-variant frontotemporal dementia patients (bvFTD; n = 22), who typically exhibit significant executive deficits, and age-matched healthy controls (n = 38). On cognitive testing, the three patient groups showed comparable memory profiles on standard episodic memory tests, with significant impairment relative to controls. Voxel-based morphometry analyses revealed extensive prefrontal and medial temporal lobe atrophy in IEF-AD and bvFTD, whereas this was limited to the middle frontal gyrus and hippocampus in SEF-AD. Moreover, the additional prefrontal atrophy in IEF-AD and bvFTD correlated with memory performance, whereas this was not the case for SEF-AD. These findings indicate that IEF-AD patients show prefrontal atrophy in regions similar to bvFTD, and suggest that this contributes to episodic memory performance. This has implications for the differential diagnosis of bvFTD and subtypes of AD

    In vivo staging of frontotemporal lobar degeneration TDP-43 type C pathology

    Get PDF
    Background: TDP-43 type C is one of the pathological forms of frontotemporal lobar degeneration (FTLD) and mainly associated clinically with the semantic variant of primary progressive aphasia (svPPA). We aimed to define in vivo the sequential pattern of neuroanatomical involvement in a cohort of patients with FTLD-TDP type C pathology. Methods: We extracted the volumes of a set of cortical and subcortical regions from MRI scans of 19 patients with post mortem confirmed TDP-43 type C pathology (all with left hemisphere-predominant atrophy at baseline). In the initial development phase, we used w-scores computed from 81 cognitively normal controls to define a set of sequential stages of neuroanatomical involvement within the FTLD-TDP type C cohort where a w-score of < − 1.65 was considered abnormal. In a subsequent validation phase, we used 31 follow-up scans from 14 of the 19 patients in the same cohort to confirm the staging model. Results: Four sequential stages were identified in the initial development phase. Stage 1 was defined by atrophy in the left amygdala, medial temporal cortex, temporal pole, lateral temporal cortex and right medial temporal cortex; Stage 2 by atrophy in the left supratemporal cortex; Stage 3 by atrophy in the right anterior insula; and Stage 4 by atrophy in the right accumbens. In the validation phase, calculation of w-scores in the longitudinal scans confirmed the staging system, with all patients either staying in the same stage or progressing to a later stage at follow-up. Conclusion: In vivo imaging is able to detect distinct stages of neuroanatomical involvement in FTLD-TDP type C pathology. Using an imaging-derived staging system allows a more refined stratification of patients with svPPA during life

    Classifying Alzheimer's disease and frontotemporal dementia using machine learning with cross-sectional and longitudinal magnetic resonance imaging data

    Full text link
    Alzheimer's disease (AD) and frontotemporal dementia (FTD) are common causes of dementia with partly overlapping, symptoms and brain signatures. There is a need to establish an accurate diagnosis and to obtain markers for disease tracking. We combined unsupervised and supervised machine learning to discriminate between AD and FTD using brain magnetic resonance imaging (MRI). We included baseline 3T-T1 MRI data from 339 subjects: 99 healthy controls (CTR), 153 AD and 87 FTD patients; and 2-year follow-up data from 114 subjects. We obtained subcortical gray matter volumes and cortical thickness measures using FreeSurfer. We used dimensionality reduction to obtain a single feature that was later used in a support vector machine for classification. Discrimination patterns were obtained with the contribution of each region to the single feature. Our algorithm differentiated CTR versus AD and CTR versus FTD at the cross-sectional level with 83.3% and 82.1% of accuracy. These increased up to 90.0% and 88.0% with longitudinal data. When we studied the classification between AD versus FTD we obtained an accuracy of 63.3% at the cross-sectional level and 75.0% for longitudinal data. The AD versus FTD versus CTR classification has reached an accuracy of 60.7%, and 71.3% for cross-sectional and longitudinal data respectively. Disease discrimination brain maps are in concordance with previous results obtained with classical approaches. By using a single feature, we were capable to classify CTR, AD, and FTD with good accuracy, considering the inherent overlap between diseases. Importantly, the algorithm can be used with cross-sectional and longitudinal data.© 2023 The Authors. Human Brain Mapping published by Wiley Periodicals LLC

    Tackling clinical heterogeneity across the Amyotrophic Lateral Sclerosis-Frontotemporal Dementia spectrum using a transdiagnostic approach

    Get PDF
    The disease syndromes of amyotrophic lateral sclerosis and frontotemporal dementia display considerable clinical, genetic and pathological overlap, yet mounting evidence indicates substantial differences in progression and survival. To date, there has been limited examination of how profiles of brain atrophy might differ between clinical phenotypes. Here, we address this longstanding gap in the literature by assessing cortical and subcortical grey and white matter volumes on structural MRI in a large cohort of 209 participants. Cognitive and behavioural changes were assessed using the Addenbrooke’s Cognitive Examination and the Cambridge Behavioural Inventory. Relative to 58 controls, behavioural variant frontotemporal dementia (n = 58) and amyotrophic lateral sclerosis-frontotemporal dementia (n = 41) patients displayed extensive atrophy of frontoinsular, cingulate, temporal and motor cortices, with marked subcortical atrophy targeting the hippocampus, amygdala, thalamus, and striatum, with atrophy further extended to the brainstem, pons and cerebellum in the latter group. At the other end of the spectrum, pure-amyotrophic lateral sclerosis patients (n = 52) displayed considerable frontoparietal atrophy, including right insular and motor cortices and pons and brainstem regions. Subcortical regions included the bilateral pallidum and putamen, but to a lesser degree than in the amyotrophic lateral sclerosis-frontotemporal dementia and behavioural variant frontotemporal dementia groups. Across the spectrum the most affected region in all three groups was the insula, and specifically the anterior part (76-90% lower than controls). Direct comparison of the patient groups revealed disproportionate temporal atrophy and widespread subcortical involvement in amyotrophic lateral sclerosis-frontotemporal dementia relative to pure-amyotrophic lateral sclerosis. In contrast, pure-amyotrophic lateral sclerosis displayed significantly greater parietal atrophy. Both behavioural variant frontotemporal dementia and amyotrophic lateral sclerosis-frontotemporal dementia were characterised by volume decrease in the frontal lobes relative to pure-amyotrophic lateral sclerosis. The motor cortex and insula emerged as differentiating structures between clinical syndromes, with bilateral motor cortex atrophy more pronounced in amyotrophic lateral sclerosis-frontotemporal dementia compared to pure-amyotrophic lateral sclerosis, and greater left motor cortex and insula atrophy relative to behavioural variant frontotemporal dementia. Taking a transdiagnostic approach, we found significant associations between abnormal behaviour and volume loss in a predominantly frontoinsular network involving the amygdala, striatum and thalamus. Our findings demonstrate the presence of distinct atrophy profiles across the amyotrophic lateral sclerosis-frontotemporal dementia spectrum, with key structures including the motor cortex and insula, Notably, our results point to subcortical involvement in the origin of behavioural disturbances, potentially accounting for the marked phenotypic variability typically observed across the spectrum

    Diagnostic Utility of Measuring Cerebral Atrophy in the Behavioral Variant of Frontotemporal Dementia and Association With Clinical Deterioration

    Get PDF
    Can widely available measures of atrophy on magnetic resonance imaging increase diagnostic certainty of underlying frontotemporal lobar degeneration (FTLD) and estimate clinical deterioration in the behavioral variant of frontotemporal dementia (bvFTD)? This diagnostic/prognostic study investigated the clinical utility of 5 validated visual atrophy scales (VAS) and the Magnetic Resonance Parkinsonism Index. When combined, VAS showed excellent diagnostic performance for differentiating between bvFTD with high and low confidence of FTLD and for the estimation of longitudinal clinical deterioration, whereas the Magnetic Resonance Parkinsonism Index was increased in bvFTD with underlying 4-repeat tauopathies. These findings suggest that, in bvFTD, VAS can be used to increase diagnostic certainty of underlying FTLD and estimate longitudinal clinical deterioration. This diagnostic/prognostic study assesses the utility of 6 visual atrophy scales and the Magnetic Resonance Parkinsonism Index in patients with behavioral variant frontotemporal dementia to distinguish those with high vs low confidence of frontotemporal lobar degeneration. The presence of atrophy on magnetic resonance imaging can support the diagnosis of the behavioral variant of frontotemporal dementia (bvFTD), but reproducible measurements are lacking. To assess the diagnostic and prognostic utility of 6 visual atrophy scales (VAS) and the Magnetic Resonance Parkinsonism Index (MRPI). In this diagnostic/prognostic study, data from 235 patients with bvFTD and 225 age- and magnetic resonance imaging-matched control individuals from 3 centers were collected from December 1, 1998, to September 30, 2019. One hundred twenty-one participants with bvFTD had high confidence of frontotemporal lobar degeneration (FTLD) (bvFTD-HC), and 19 had low confidence of FTLD (bvFTD-LC). Blinded clinicians applied 6 previously validated VAS, and the MRPI was calculated with a fully automated approach. Cortical thickness and subcortical volumes were also measured for comparison. Data were analyzed from February 1 to June 30, 2020. The main outcomes of this study were bvFTD-HC or a neuropathological diagnosis of 4-repeat (4R) tauopathy and the clinical deterioration rate (assessed by longitudinal measurements of Clinical Dementia Rating Sum of Boxes). Measures of cerebral atrophy included VAS scores, the bvFTD atrophy score (sum of VAS scores in orbitofrontal, anterior cingulate, anterior temporal, medial temporal lobe, and frontal insula regions), the MRPI, and other computerized quantifications of cortical and subcortical volumes. The areas under the receiver operating characteristic curve (AUROC) were calculated for the differentiation of participants with bvFTD-HC and bvFTD-LC and controls. Linear mixed models were used to evaluate the ability of atrophy measures to estimate longitudinal clinical deterioration. Of the 460 included participants, 296 (64.3%) were men, and the mean (SD) age was 62.6 (11.4) years. The accuracy of the bvFTD atrophy score for the differentiation of bvFTD-HC from controls (AUROC, 0.930; 95% CI, 0.903-0.957) and bvFTD-HC from bvFTD-LC (AUROC, 0.880; 95% CI, 0.787-0.972) was comparable to computerized measures (AUROC, 0.973 [95% CI, 0.954-0.993] and 0.898 [95% CI, 0.834-0.962], respectively). The MRPI was increased in patients with bvFTD and underlying 4R tauopathies compared with other FTLD subtypes (14.1 [2.0] vs 11.2 [2.6] points; P < .001). Higher bvFTD atrophy scores were associated with faster clinical deterioration in bvFTD (1.86-point change in Clinical Dementia Rating Sum of Boxes score per bvFTD atrophy score increase per year; 95% CI, 0.99-2.73; P < .001). Based on these study findings, in bvFTD, VAS increased the diagnostic certainty of underlying FTLD, and the MRPI showed potential for the detection of participants with underlying 4R tauopathies. These widely available measures of atrophy can also be useful to estimate longitudinal clinical deterioration

    Morphological alterations in frontotemporal dementia:

    Get PDF
    The present thesis explores alterations in brain morphology in the neurodegenerative disorder of frontotemporal dementia (FTD). With the aim to improve the clinical diagnostics of FTD, we explored the diagnostic potential of measuring morphological alterations in the white matter by diffusion tensor imaging (DTI)- MRI, compared with the more commonly used assessment of grey matter thickness and volume. DTI-MRI was better at separating FTD cases from controls than grey matter parameters, and may thus be a promising supplementary imaging tool for the diagnostic work in FTD. We used DTI in combination with grey matter imaging to explore the morphological underpinnings of one of the central behavioural symptoms in FTD, disinhibition. Our results show that this symptom appears related to the integrity of an orbitofrontal-temporal network, as opposed to the prevailing view of a degeneration of the orbitofrontal cortex. An important question in FTD is what constitutes the morphological link between the molecular pathologies and the characteristic frontotemporal pattern of cortical degeneration. The von Economo neurons (VENs), are a particular type of neurons that are proposed to constitute this link. We confirm results from others, showing that these neurons are selectively degenerated in FTD. In addition we show that these neurons are more afflicted than pyramidal neurons in the superficial cortical layers, previously thought to be the most selectively degenerated in the cortex of FTD. The findings presented in this thesis will hopefully contribute both to improved diagnostics, understanding of clinico-pathological relationships, and of the pathophysiology of this condition
    corecore