74,886 research outputs found

    Disease Pathway Cut for Multi-Target drugs

    Get PDF
    BACKGROUND: Biomarker discovery studies have been moving the focus from a single target gene to a set of target genes. However, the number of target genes in a drug should be minimum to avoid drug side-effect or toxicity. But still, the set of target genes should effectively block all possible paths of disease progression. METHODS: In this article, we propose a network based computational analysis for target gene identification for multi-target drugs. The min-cut algorithm is employed to cut all the paths from onset genes to apoptotic genes on a disease pathway. If the pathway network is completely disconnected, development of disease will not further go on. The genes corresponding to the end points of the cutting edges are identified as candidate target genes for a multi-target drug. RESULTS AND CONCLUSIONS: The proposed method was applied to 10 disease pathways. In total, thirty candidate genes were suggested. The result was validated with gene set enrichment analysis software, PubMed literature review and de facto drug targets.ope

    Bioinformatic Analysis for the Validation of Novel Biomarkers for Cancer Diagnosis and Drug Sensitivity

    Get PDF
    Background: The genetic control of tumour progression presents the opportunity for bioinformatics and gene expression data to be used as a basis for tumour grading. The development of a genetic signature based on microarray data allows for the development of personalised chemotherapeutic regimes. Method: ONCOMINE was utilised to create a genetic signature for ovarian serous adenocarcinoma and to compare the expression of genes between normal ovarian and cancerous cells. Ingenuity Pathways Analysis was also utilised to develop molecular pathways and observe interactions with exogenous molecules. Results: The gene signature demonstrated 98.6% predictive capability for the differentiation between borderline ovarian serous neoplasm and ovarian serous adenocarcinoma. The data demonstrated that many genes were related to angiogenesis. Thymidylate synthase, GLUT-3 and HSP90AA1 were related to tanespimycin sensitivity (p=0.005). Conclusions: Genetic profiling with the gene signature demonstrated potential for clinical use. The use of tanespimycin alongside overexpression of thymidylate synthase, GLUT-3 and HSP90AA1 is a novel consideration for ovarian cancer treatment

    New compound sets identified from high throughput phenotypic screening against three kinetoplastid parasites:an open resource

    Get PDF
    Using whole-cell phenotypic assays, the GlaxoSmithKline high-throughput screening (HTS) diversity set of 1.8 million compounds was screened against the three kinetoplastids most relevant to human disease, i.e. Leishmania donovani, Trypanosoma cruzi and Trypanosoma brucei. Secondary confirmatory and orthogonal intracellular anti-parasiticidal assays were conducted, and the potential for non-specific cytotoxicity determined. Hit compounds were chemically clustered and triaged for desirable physicochemical properties. The hypothetical biological target space covered by these diversity sets was investigated through bioinformatics methodologies. Consequently, three anti-kinetoplastid chemical boxes of ~200 compounds each were assembled. Functional analyses of these compounds suggest a wide array of potential modes of action against kinetoplastid kinases, proteases and cytochromes as well as potential host–pathogen targets. This is the first published parallel high throughput screening of a pharma compound collection against kinetoplastids. The compound sets are provided as an open resource for future lead discovery programs, and to address important research questions.The support and funding of Tres Cantos Open Lab Foundation is gratefully acknowledgedPeer reviewe

    On the Road to Accurate Biomarkers for Cardiometabolic Diseases by Integrating Precision and Gender Medicine Approaches

    Get PDF
    The need to facilitate the complex management of cardiometabolic diseases (CMD) has led to the detection of many biomarkers, however, there are no clear explanations of their role in the prevention, diagnosis or prognosis of these diseases. Molecules associated with disease pathways represent valid disease surrogates and well-fitted CMD biomarkers. To address this challenge, data from multi-omics types (genomics, epigenomics, transcriptomics, proteomics, metabolomics, microbiomics, and nutrigenomics), from human and animal models, have become available. However, individual omics types only provide data on a small part of molecules involved in the complex CMD mechanisms, whereas, here, we propose that their integration leads to multidimensional data. Such data provide a better understanding of molecules related to CMD mechanisms and, consequently, increase the possibility of identifying well-fitted biomarkers. In addition, the application of gender medicine also helps to identify accurate biomarkers according to gender, facilitating a differential CMD management. Accordingly, the impact of gender differences in CMD pathophysiology has been widely demonstrated, where gender is referred to the complex interrelation and integration of sex (as a biological and functional marker of the human body) and psychological and cultural behavior (due to ethnical, social, and religious background). In this review, all these aspects are described and discussed, as well as potential limitations and future directions in this incipient field

    Primary CNS Lymphoma

    Get PDF
    Primary diffuse large B-cell lymphoma (DLBCL) of the central nervous system is an aggressive malignancy that exhibits unique biological features and characteristic clinical behaviour, with overall long-term survival rates of around 20–40 %. Clinical outcome has improved following the advent of chemoradiation protocols incorporating high-dose methotrexate in the mid-1980s, but disease relapse and adverse neurocognitive sequelae remain major clinical challenges. To address this, investigators have focused on improving drug therapy with novel cytotoxic combinations, monoclonal antibody therapy, and intensive chemotherapy consolidation approaches, in an attempt to improve disease control whilst reducing the requirement for whole-brain radiotherapy. Outcomes for patients that are older, immunocompromised, or have relapsed/refractory disease remain unsatisfactory and there is a paucity of clinical trial data to guide treatment of these groups. This review highlights recent advances in pathobiology, imaging, and clinical management of PCNSL and looks ahead to research priorities for this rare and challenging lymphoid malignancy

    The dynamics of gene expression changes in a mouse model of oral tumorigenesis may help refine prevention and treatment strategies in patients with oral cancer.

    Get PDF
    A better understanding of the dynamics of molecular changes occurring during the early stages of oral tumorigenesis may help refine prevention and treatment strategies. We generated genome-wide expression profiles of microdissected normal mucosa, hyperplasia, dysplasia and tumors derived from the 4-NQO mouse model of oral tumorigenesis. Genes differentially expressed between tumor and normal mucosa defined the "tumor gene set" (TGS), including 4 non-overlapping gene subsets that characterize the dynamics of gene expression changes through different stages of disease progression. The majority of gene expression changes occurred early or progressively. The relevance of these mouse gene sets to human disease was tested in multiple datasets including the TCGA and the Genomics of Drug Sensitivity in Cancer project. The TGS was able to discriminate oral squamous cell carcinoma (OSCC) from normal oral mucosa in 3 independent datasets. The OSCC samples enriched in the mouse TGS displayed high frequency of CASP8 mutations, 11q13.3 amplifications and low frequency of PIK3CA mutations. Early changes observed in the 4-NQO model were associated with a trend toward a shorter oral cancer-free survival in patients with oral preneoplasia that was not seen in multivariate analysis. Progressive changes observed in the 4-NQO model were associated with an increased sensitivity to 4 different MEK inhibitors in a panel of 51 squamous cell carcinoma cell lines of the areodigestive tract. In conclusion, the dynamics of molecular changes in the 4-NQO model reveal that MEK inhibition may be relevant to prevention and treatment of a specific molecularly-defined subgroup of OSCC

    Redox control of multidrug resistance and Its possible modulation by antioxidants

    Get PDF
    Clinical efficacy of anticancer chemotherapies is dramatically hampered by multidrug resistance (MDR) dependent on inherited traits, acquired defence against toxins, and adaptive mechanisms mounting in tumours. There is overwhelming evidence that molecular events leading to MDR are regulated by redox mechanisms. For example, chemotherapeutics which overrun the first obstacle of redox-regulated cellular uptake channels (MDR1, MDR2, and MDR3) induce a concerted action of phase I/II metabolic enzymes with a temporal redox-regulated axis. This results in rapid metabolic transformation and elimination of a toxin. This metabolic axis is tightly interconnected with the inducible Nrf2-linked pathway, a key switch-on mechanism for upregulation of endogenous antioxidant enzymes and detoxifying systems. As a result, chemotherapeutics and cytotoxic by-products of their metabolism (ROS, hydroperoxides, and aldehydes) are inactivated and MDR occurs. On the other hand, tumour cells are capable of mounting an adaptive antioxidant response against ROS produced by chemotherapeutics and host immune cells. The multiple redox-dependent mechanisms involved in MDR prompted suggesting redox-active drugs (antioxidants and prooxidants) or inhibitors of inducible antioxidant defence as a novel approach to diminish MDR. Pitfalls and progress in this direction are discussed

    Expression of Drug Targets in Patients Treated with Sorafenib, Carboplatin and Paclitaxel

    Get PDF
    Introduction: Sorafenib, a multitarget kinase inhibitor, targets members of the mitogen-activated protein kinase (MAPK) pathway and VEGFR kinases. Here we assessed the association between expression of sorafenib targets and biomarkers of taxane sensitivity and response to therapy in pre-treatment tumors from patients enrolled in ECOG 2603, a phase III comparing sorafenib, carboplatin and paclitaxel (SCP) to carboplatin, paclitaxel and placebo (CP). Methods: Using a method of automated quantitative analysis (AQUA) of in situ protein expression, we quantified expression of VEGF-R2, VEGF-R1, VEGF-R3, FGF-R1, PDGF-Rβ, c-Kit, B-Raf, C-Raf, MEK1, ERK1/2, STMN1, MAP2, EB1 and Bcl-2 in pretreatment specimens from 263 patients. Results: An association was found between high FGF-R1 and VEGF-R1 and increased progression-free survival (PFS) and overall survival (OS) in our combined cohort (SCP and CP arms). Expression of FGF-R1 and VEGF-R1 was higher in patients who responded to therapy ((CR+PR) vs. (SD+PD+ un-evaluable)). Conclusions: In light of the absence of treatment effect associated with sorafenib, the association found between FGF-R1 and VEGF-R1 expression and OS, PFS and response might reflect a predictive biomarker signature for carboplatin/paclitaxel-based therapy. Seeing that carboplatin and pacitaxel are now widely used for this disease, corroboration in another cohort might enable us to improve the therapeutic ratio of this regimen. © 2013 Jilaveanu et al
    corecore