5,606 research outputs found

    Data mining reactor fuel grab load trace data to support nuclear core condition monitoring

    Get PDF
    A critical component of an advanced-gas cooled reactor (AGR) station is the graphite core. As a station ages, the graphite bricks that comprise the core can distort and may eventually crack. As the core cannot be replaced the core integrity ultimately determines the station life. Monitoring these distortions is usually restricted to the routine outages, which occur every few years, as this is the only time that the reactor core can be accessed by external sensing equipment. However, during weekly refueling activities measurements are taken from the core for protection and control purposes. It is shown in this paper that these measurements may be interpreted for condition monitoring purposes, thus potentially providing information relating to core condition on a more frequent basis. This paper describes the data-mining approach adopted to analyze this data and also describes a software system designed and implemented to support this process. The use of this software to develop a model of expected behavior based on historical data, which may highlight events containing unusual features possibly indicative of brick cracking, is also described. Finally, the implementation of this newly acquired understanding in an automated analysis system is described

    Automated in-core image generation from video to aid visual inspection of nuclear power plant cores

    Get PDF
    Inspection and monitoring of key components of nuclear power plant reactors is an essential activity for understanding the current health of the power plant and ensuring that they continue to remain safe to operate. As the power plants age, and the components degrade from their initial start-of-life conditions, the requirement for more and more detailed inspection and monitoring information increases. Deployment of new monitoring and inspection equipment on existing operational plant is complex and expensive, as the effect of introducing new sensing and imaging equipment to the existing operational functions needs to be fully understood. Where existing sources of data can be leveraged, the need for new equipment development and installation can be offset by the development of advanced data processing techniques. This paper introduces a novel technique for creating full 360° panorama images of the inside surface of fuel channels from in-core inspection footage. Through the development of this technique, a number of technical challenges associated with the constraints of using existing equipment have been addressed. These include: the inability to calibrate the camera specifically for image stitching; dealing with additional data not relevant to the panorama construction; dealing with noisy images; and generalising the approach to work with two different capture devices deployed at seven different Advanced Gas Cooled Reactor nuclear power plants. The resulting data processing system is currently under formal assessment with a view to replacing the existing manual assembly of in-core defect montages. Deployment of the system will result in significant time savings on the critical outage path for the plant operator and will result in improved visualisation of the surface of the inside of fuel channels, far beyond that which can be gained from manually analysing the raw video footage as is done at present

    Manned Venus Flyby

    Get PDF
    This study is one of several being conducted at Bellcomm and in Manned Space Flight whose purpose is to give guidance to the Apollo Applications Program's technical objectives by focusing on a longer range goal. The assumed mission in this case is a three-man flyby of Venus launched in November, 1973 on a single standard Saturn V. The selected flight configuration includes a Command and Service Module similar in some respects to Apollo, an Environmental Support Module which occupies the adapter area and a spent S-IVB stage which is utilized for habitable volume and structural support of a solar cell electrical power system. The total injected weight, 106,775 lbs., is within the capability of a single Saturn V of the early 1970's. The study is focused on the selection of subsystem technologies appropriate to long duration flight. The conclusions are reported in terms of the technical characteristics to be achieved as part of the Apollo Applications Program's long duration objectives

    Remote sensing program

    Get PDF
    Built on Cornell's thirty years of experience in aerial photographic studies, the NASA-sponsored remote sensing program strengthened instruction and research in remote sensing, established communication links within and beyond the university community, and conducted research projects for or with town, county, state, federal, and private organizations in New York State. The 43 completed applied research projects are listed as well as 13 spinoff grants/contracts. The curriculum offered, consultations provided, and data processing facilities available are described. Publications engendered are listed including the thesis of graduates in the remote sensing program

    Automated image stitching for enhanced visual inspections of nuclear power stations

    Get PDF
    In the UK, visual inspection of the fuel channels of the Advanced Gas-cooled Reactor (AGR) nuclear power stations forms an integral part of understanding the health of the reactor cores. During a statutory outage, video footage of the inside of selected fuel channels is recorded. Features of interest and anomalies are manually identified by an expert who extracts frames from the video to create a composite image for the feature of interest. This is a laborious and time consuming process which can be costly to station operators who must produce these images before returning the station to service. This paper describes an automatic technique capable of generating a 2D image of the entire internal bore of the channel. The technique uses the position of the camera coupled with advanced image processing techniques to generate a high-resolution image of the whole channel. This allows surface details to be viewed in relation to each other, and the rest of the channel, while facilitating a direct comparison of any anomalies over time. In addition, the time taken by this automated technique to produce a full core image is a fraction of that taken to manually stitch an image for a much smaller area
    corecore