43 research outputs found

    A tutorial introduction to the minimum description length principle

    Full text link
    This tutorial provides an overview of and introduction to Rissanen's Minimum Description Length (MDL) Principle. The first chapter provides a conceptual, entirely non-technical introduction to the subject. It serves as a basis for the technical introduction given in the second chapter, in which all the ideas of the first chapter are made mathematically precise. The main ideas are discussed in great conceptual and technical detail. This tutorial is an extended version of the first two chapters of the collection "Advances in Minimum Description Length: Theory and Application" (edited by P.Grunwald, I.J. Myung and M. Pitt, to be published by the MIT Press, Spring 2005).Comment: 80 pages 5 figures Report with 2 chapter

    The velocity distribution of nearby stars from Hipparcos data I. The significance of the moving groups

    Full text link
    We present a three-dimensional reconstruction of the velocity distribution of nearby stars (<~ 100 pc) using a maximum likelihood density estimation technique applied to the two-dimensional tangential velocities of stars. The underlying distribution is modeled as a mixture of Gaussian components. The algorithm reconstructs the error-deconvolved distribution function, even when the individual stars have unique error and missing-data properties. We apply this technique to the tangential velocity measurements from a kinematically unbiased sample of 11,865 main sequence stars observed by the Hipparcos satellite. We explore various methods for validating the complexity of the resulting velocity distribution function, including criteria based on Bayesian model selection and how accurately our reconstruction predicts the radial velocities of a sample of stars from the Geneva-Copenhagen survey (GCS). Using this very conservative external validation test based on the GCS, we find that there is little evidence for structure in the distribution function beyond the moving groups established prior to the Hipparcos mission. This is in sharp contrast with internal tests performed here and in previous analyses, which point consistently to maximal structure in the velocity distribution. We quantify the information content of the radial velocity measurements and find that the mean amount of new information gained from a radial velocity measurement of a single star is significant. This argues for complementary radial velocity surveys to upcoming astrometric surveys

    Minimum Description Length Induction, Bayesianism, and Kolmogorov Complexity

    Get PDF
    The relationship between the Bayesian approach and the minimum description length approach is established. We sharpen and clarify the general modeling principles MDL and MML, abstracted as the ideal MDL principle and defined from Bayes's rule by means of Kolmogorov complexity. The basic condition under which the ideal principle should be applied is encapsulated as the Fundamental Inequality, which in broad terms states that the principle is valid when the data are random, relative to every contemplated hypothesis and also these hypotheses are random relative to the (universal) prior. Basically, the ideal principle states that the prior probability associated with the hypothesis should be given by the algorithmic universal probability, and the sum of the log universal probability of the model plus the log of the probability of the data given the model should be minimized. If we restrict the model class to the finite sets then application of the ideal principle turns into Kolmogorov's minimal sufficient statistic. In general we show that data compression is almost always the best strategy, both in hypothesis identification and prediction.Comment: 35 pages, Latex. Submitted IEEE Trans. Inform. Theor

    Diverse consequences of algorithmic probability

    Get PDF
    We reminisce and discuss applications of algorithmic probability to a wide range of problems in artificial intelligence, philosophy and technological society. We propose that Solomonoff has effectively axiomatized the field of artificial intelligence, therefore establishing it as a rigorous scientific discipline. We also relate to our own work in incremental machine learning and philosophy of complexity. © 2013 Springer-Verlag Berlin Heidelberg

    Natural Language Syntax Complies with the Free-Energy Principle

    Full text link
    Natural language syntax yields an unbounded array of hierarchically structured expressions. We claim that these are used in the service of active inference in accord with the free-energy principle (FEP). While conceptual advances alongside modelling and simulation work have attempted to connect speech segmentation and linguistic communication with the FEP, we extend this program to the underlying computations responsible for generating syntactic objects. We argue that recently proposed principles of economy in language design - such as "minimal search" criteria from theoretical syntax - adhere to the FEP. This affords a greater degree of explanatory power to the FEP - with respect to higher language functions - and offers linguistics a grounding in first principles with respect to computability. We show how both tree-geometric depth and a Kolmogorov complexity estimate (recruiting a Lempel-Ziv compression algorithm) can be used to accurately predict legal operations on syntactic workspaces, directly in line with formulations of variational free energy minimization. This is used to motivate a general principle of language design that we term Turing-Chomsky Compression (TCC). We use TCC to align concerns of linguists with the normative account of self-organization furnished by the FEP, by marshalling evidence from theoretical linguistics and psycholinguistics to ground core principles of efficient syntactic computation within active inference

    On Cognitive Preferences and the Plausibility of Rule-based Models

    Get PDF
    It is conventional wisdom in machine learning and data mining that logical models such as rule sets are more interpretable than other models, and that among such rule-based models, simpler models are more interpretable than more complex ones. In this position paper, we question this latter assumption by focusing on one particular aspect of interpretability, namely the plausibility of models. Roughly speaking, we equate the plausibility of a model with the likeliness that a user accepts it as an explanation for a prediction. In particular, we argue that, all other things being equal, longer explanations may be more convincing than shorter ones, and that the predominant bias for shorter models, which is typically necessary for learning powerful discriminative models, may not be suitable when it comes to user acceptance of the learned models. To that end, we first recapitulate evidence for and against this postulate, and then report the results of an evaluation in a crowd-sourcing study based on about 3.000 judgments. The results do not reveal a strong preference for simple rules, whereas we can observe a weak preference for longer rules in some domains. We then relate these results to well-known cognitive biases such as the conjunction fallacy, the representative heuristic, or the recogition heuristic, and investigate their relation to rule length and plausibility.Comment: V4: Another rewrite of section on interpretability to clarify focus on plausibility and relation to interpretability, comprehensibility, and justifiabilit

    Kolmogorov Last Discovery? (Kolmogorov and Algorithmic Statictics)

    Full text link
    The last theme of Kolmogorov's mathematics research was algorithmic theory of information, now often called Kolmogorov complexity theory. There are only two main publications of Kolmogorov (1965 and 1968-1969) on this topic. So Kolmogorov's ideas that did not appear as proven (and published) theorems can be reconstructed only partially based on work of his students and collaborators, short abstracts of his talks and the recollections of people who were present at these talks. In this survey we try to reconstruct the development of Kolmogorov's ideas related to algorithmic statistics (resource-bounded complexity, structure function and stochastic objects).Comment: [version 2: typos and minor errors corrected

    Interpretations of Probability

    Get PDF
    corecore