12,502 research outputs found

    Evolving Ensemble Fuzzy Classifier

    Full text link
    The concept of ensemble learning offers a promising avenue in learning from data streams under complex environments because it addresses the bias and variance dilemma better than its single model counterpart and features a reconfigurable structure, which is well suited to the given context. While various extensions of ensemble learning for mining non-stationary data streams can be found in the literature, most of them are crafted under a static base classifier and revisits preceding samples in the sliding window for a retraining step. This feature causes computationally prohibitive complexity and is not flexible enough to cope with rapidly changing environments. Their complexities are often demanding because it involves a large collection of offline classifiers due to the absence of structural complexities reduction mechanisms and lack of an online feature selection mechanism. A novel evolving ensemble classifier, namely Parsimonious Ensemble pENsemble, is proposed in this paper. pENsemble differs from existing architectures in the fact that it is built upon an evolving classifier from data streams, termed Parsimonious Classifier pClass. pENsemble is equipped by an ensemble pruning mechanism, which estimates a localized generalization error of a base classifier. A dynamic online feature selection scenario is integrated into the pENsemble. This method allows for dynamic selection and deselection of input features on the fly. pENsemble adopts a dynamic ensemble structure to output a final classification decision where it features a novel drift detection scenario to grow the ensemble structure. The efficacy of the pENsemble has been numerically demonstrated through rigorous numerical studies with dynamic and evolving data streams where it delivers the most encouraging performance in attaining a tradeoff between accuracy and complexity.Comment: this paper has been published by IEEE Transactions on Fuzzy System

    Medical analysis and diagnosis by neural networks

    Get PDF
    In its first part, this contribution reviews shortly the application of neural network methods to medical problems and characterizes its advantages and problems in the context of the medical background. Successful application examples show that human diagnostic capabilities are significantly worse than the neural diagnostic systems. Then, paradigm of neural networks is shortly introduced and the main problems of medical data base and the basic approaches for training and testing a network by medical data are described. Additionally, the problem of interfacing the network and its result is given and the neuro-fuzzy approach is presented. Finally, as case study of neural rule based diagnosis septic shock diagnosis is described, on one hand by a growing neural network and on the other hand by a rule based system. Keywords: Statistical Classification, Adaptive Prediction, Neural Networks, Neurofuzzy, Medical System

    Periodic Review, Push Inventory Policies for Remanufacturing

    Get PDF
    Sustainability has become a major issue in most economies, causing many leading companies to focus on product recovery and reverse logistics. This research is focused on product recovery, and in particular on production control and inventory management in the remanufacturing context. We study a remanufacturing facility that receives a stream of returned products according to a Poisson process. Demand is uncertain and also follows a Poisson process. The decision problems for the remanufacturing facility are when to release returned products to the remanufacturing line and how many new products to manufacture. We assume that remanufactured products are as good as new. In this paper, we employ a "push" policy that combines these two decisions. It is well known that the optimal policy parameters are difficult to find analytically; therefore, we develop several heuristics based on traditional inventory models. We also investigate the performance of the system as a function of return rates, backorder costs and manufacturing and remanufacturing lead times; and we develop approximate lower and upper bounds on the optimal solution. We illustrate and explain some counter-intuitive results and we test the performance of the heuristics on a set of sample problems. We find that the average error of the heuristics is quite low.inventory;reverse logistics;remanufacturing;environment;heuristics

    Optimal Iris Fuzzy Sketches

    Full text link
    Fuzzy sketches, introduced as a link between biometry and cryptography, are a way of handling biometric data matching as an error correction issue. We focus here on iris biometrics and look for the best error-correcting code in that respect. We show that two-dimensional iterative min-sum decoding leads to results near the theoretical limits. In particular, we experiment our techniques on the Iris Challenge Evaluation (ICE) database and validate our findings.Comment: 9 pages. Submitted to the IEEE Conference on Biometrics: Theory, Applications and Systems, 2007 Washington D

    Design and Analysis of an Estimation of Distribution Approximation Algorithm for Single Machine Scheduling in Uncertain Environments

    Full text link
    In the current work we introduce a novel estimation of distribution algorithm to tackle a hard combinatorial optimization problem, namely the single-machine scheduling problem, with uncertain delivery times. The majority of the existing research coping with optimization problems in uncertain environment aims at finding a single sufficiently robust solution so that random noise and unpredictable circumstances would have the least possible detrimental effect on the quality of the solution. The measures of robustness are usually based on various kinds of empirically designed averaging techniques. In contrast to the previous work, our algorithm aims at finding a collection of robust schedules that allow for a more informative decision making. The notion of robustness is measured quantitatively in terms of the classical mathematical notion of a norm on a vector space. We provide a theoretical insight into the relationship between the properties of the probability distribution over the uncertain delivery times and the robustness quality of the schedules produced by the algorithm after a polynomial runtime in terms of approximation ratios
    corecore