88 research outputs found

    Genetic Programming to Optimise 3D Trajectories

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial TechnologiesTrajectory optimisation is a method of finding the optimal route connecting a start and end point. The suitability of a trajectory depends on non-intersection with any obstacles as well as predefined performance metrics. In the context of UAVs, the goal is to minimise the cost of the route, in terms of energy or time, while avoiding restricted flight zones. Artificial intelligence techniques including evolutionary computation have been applied to trajectory optimisation with various degrees of success. This thesis explores the use of genetic programming (GP) to optimise trajectories in 3D space, by encoding 3D geographic trajectories as syntax trees representing a curve. A comprehensive review of the relevant literature is presented, covering the theory and techniques of GP, as well as the principles and challenges of 3D trajectory optimisation. The main contribution of this work is the development and implementation of a novel GP algorithm using function trees to encode 3D geographical trajectories. The trajectories are validated and evaluated using a realworld dataset and multiple objectives. The results demonstrate the effectiveness of the proposed algorithm, which outperforms existing methods in terms of speed, automaticity, and robustness. Finally, insights and recommendations for future research in this area are provided, highlighting the potential for GP to be applied to other complex optimisation problems in engineering and science

    Advances in Evolutionary Algorithms

    Get PDF
    With the recent trends towards massive data sets and significant computational power, combined with evolutionary algorithmic advances evolutionary computation is becoming much more relevant to practice. Aim of the book is to present recent improvements, innovative ideas and concepts in a part of a huge EA field

    Modelling and multiobjective optimization for simulation of cyanobacterial metabolism

    Full text link
    The present thesis is devoted to the development of models and algorithms to improve metabolic simulations of cyanobacterial metabolism. Cyanobacteria are photosynthetic bacteria of great biotechnological interest to the development of sustainable bio-based manufacturing processes. For this purpose, it is fundamental to understand metabolic behaviour of these organisms, and constraint-based metabolic modelling techniques offer a platform for analysis and assessment of cell's metabolic functionality. Reliable simulations are needed to enhance the applicability of the results, and this is the main goal of this thesis. This dissertation has been structured in three parts. The first part is devoted to introduce needed fundamentals of the disciplines that are combined in this work: metabolic modelling, cyanobacterial metabolism and multi-objective optimisation. In the second part the reconstruction and update of metabolic models of two cyanobacterial strains is addressed. These models are then used to perform metabolic simulations with the application of the classic Flux Balance Analysis (FBA) methodology. The studies conducted in this part are useful to illustrate the uses and applications of metabolic simulations for the analysis of living organisms. And at the same time they serve to identify important limitations of classic simulation techniques based on mono-objective linear optimisation that motivate the search of new strategies. Finally, in the third part a novel approach is defined based on the application of multi-objective optimisation procedures to metabolic modelling. Main steps in the definition of multi-objective problem and the description of an optimisation algorithm that ensure the applicability of the obtained results, as well as the multi-criteria analysis of the solutions are covered. The resulting tool allows the definition of non-linear objective functions and constraints, as well as the analysis of multiple Pareto-optimal solutions. It avoids some of the main drawbacks of classic methodologies, leading to more flexible simulations and more realistic results. Overall this thesis contributes to the advance in the study of cyanobacterial metabolism by means of definition of models and strategies that improve plasticity and predictive capacities of metabolic simulations.La presente tesis está dedicada al desarrollo de modelos y algoritmos para mejorar las simulaciones metabólicas de cianobacterias. Las cianobacterias son bacterias fotosintéticas de gran interés biotecnológico para el desarrollo de bioprocesos productivos sostenibles. Para este propósito, es fundamental entender el comportamiento metabólico de estos organismos, y el modelado metabólico basado en restricciones ofrece una plataforma para el análisis y la evaluación de las funcionalidades metabólicas de las células. Se necesitan simulaciones fidedignas para aumentar la aplicabilidad de los resultados, y este es el objetivo principal de esta tesis. Esta disertación se ha estructurado en tres partes. La primera parte está dedicada a introducir los fundamentos necesarios de las disciplinas que se combinan en este trabajo: el modelado metabólico, el metabolismo de cianobacterias, y la optimización multiobjetivo. En la segunda parte, se encara la reconstrucción y la actualización de los modelos metabólicos de dos cepas de cianobacterias. Estos modelos se usan después para llevar a cabo simulaciones metabólicas con la aplicación de la metodología clásica Flux Balance Analysis (FBA). Los estudios realizados en esta parte son útiles para ilustrar los usos y aplicaciones de las simulaciones metabólicas para el análisis de los organismos vivos. Y al mismo tiempo sirven para identificar importantes limitaciones de las técnicas clásicas de simulación basadas en optimización lineal mono-objetivo que motivan la búsqueda de nuevas estrategias. Finalmente, en la tercera parte, se define una nueva aproximación basada en la aplicación al modelado metabólico de procedimientos de optimización multiobjetivo. Se cubren los principales pasos en la definición de un problema multiobjetivo y la descripción de un algoritmo de optimización que aseguren la aplicabilidad de los resultados obtenidos, así como el análisis multi-criterio de las soluciones. La herramienta resultante permite la definición de funciones objetivo y restricciones no lineales, así como el análisis de múltiples soluciones en el sentido de Pareto. Esta herramienta evita algunos de los principales inconvenientes de las metodologías clásicas, lo que lleva a obtener simulaciones más flexibles y resultados más realistas. En conjunto, esta tesis contribuye al avance en el estudio del metabolismo de cianobacterias por medio de la definición de modelos y estrategias que mejoran la plasticidad y las capacidades predictivas de las simulaciones metabólicas.La present tesi està dedicada al desenvolupament de models i algorismes per a millorar les simulacions metabòliques de cianobacteris. Els cianobacteris són bacteris fotosintètics de gran interés biotecnològic per al desenvolupament de bioprocessos productius sostenibles. Per a aquest propòsit, és fonamental entendre el comportament metabòlic d'aquests organismes, i el modelatge metabòlic basat en restriccions ofereix una plataforma per a l'anàlisi i l'avaluació de les funcionalitats metabòliques de les cèl·lules. Es necessiten simulacions fidedignes per a augmentar l'aplicabilitat dels resultats, i aquest és l'objectiu principal d'aquesta tesi. Aquesta dissertació s'ha estructurat en tres parts. La primera part està dedicada a introduir els fonaments necessaris de les disciplines que es combinen en aquest treball: el modelatge metabòlic, el metabolisme de cianobacteris i l'optimització multiobjectiu. En la segona part, s'adreça la reconstrucció i l'actualització dels models metabòlics de dos soques de cianobacteris. Aquests models s'empren després per a portar a terme simulacions metabòliques amb l'aplicació de la metodologia clàssica Flux Balance Analysis (FBA). Els estudis realitzats en aquesta part són útils per a il·lustrar els usos i aplicacions de les simulacions metabòliques per a l'anàlisi dels organismes vius. I al mateix temps serveixen per a identificar importants limitacions de les tècniques clàssiques de simulació basades en optimització lineal mono-objectiu que motiven la cerca de noves estratègies. Finalment, en la tercera part, es defineix una nova aproximació basada en l'aplicació al modelatge metabòlic de procediments d'optimització multiobjectiu. Es cobreixen els principals passos en la definició d'un problema multiobjectiu i la descripció d'un algorisme d'optimització que asseguren l'aplicabilitat dels resultats obtinguts, així com l'anàlisi multi-criteri de les solucions. La ferramenta resultant permet la definició de funcions objectiu i restriccions no lineals, així com l'anàlisi de múltiples solucions òptimes en el sentit de Pareto. Aquesta ferramenta evita alguns dels principals inconvenients de les metodologies clàssiques, el que porta a obtenir simulacions més flexibles i resultats més realistes. En conjunt, aquesta tesi contribueix a l'avanç en l'estudi del metabolisme de cianobacteris per mitjà de la definició de models i estratègies que milloren la plasticitat i les capacitats predictives de les simulacions metabòliques.Siurana Paula, M. (2017). Modelling and multiobjective optimization for simulation of cyanobacterial metabolism [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/9057

    Technological and design aspects of the processing of composites and nanocomposites. Volume III

    Get PDF
    Processing of composites and nanocomposites materials constitutes nowadays an important area of research given the growing interest by these types of materials due to its singular properties, namely in what concerns technological and design aspects. This monography presents the developments taking place in the framework of the NEWEX project during the fourth year of its duration, which is a sequence of other two previous monographies. The main objective of the NEWEX project entitled “Investigation and development of a new generation of machines for the processing of composite and nanocomposites materials” is the exchange of researchers from the institutions participating in the project. Another important objective consists in develop permanent international and inter-sector collaboration between academic research centres (Lublin University of Technology, Technical University of Kosice, University of Minho) and industrial organizations (Zamak-Mercator LLC and SEZ-Krompachy a.s., Dirmeta UAB). The contents of this book reflects the work done within the NEWEX project. It starts by presenting the results obtained concerning new concepts for the extruder parts studied and the manufacturing of those extruder parts. Then, some approaches for modelling and optimizing and to study experimentally the process are described, which includes mixing analysis and monitoring. Finally, a practical and state-of-theart application of the extrusion is identified, namely 3D printing. It is expected that the nine chapters of this monography be useful to the industry of plastics processing and for scientific organisations dealing with technologies and processing of polymer composites and nanocomposites

    ACCEL : a tool for supporting concept generation in the early design phase

    Get PDF
    +139hlm.;24c

    Real-time multi-domain optimization controller for multi-motor electric vehicles using automotive-suitable methods and heterogeneous embedded platforms

    Get PDF
    Los capítulos 2,3 y 7 están sujetos a confidencialidad por el autor. 145 p.In this Thesis, an elaborate control solution combining Machine Learning and Soft Computing techniques has been developed, targeting a chal lenging vehicle dynamics application aiming to optimize the torque distribution across the wheels with four independent electric motors.The technological context that has motivated this research brings together potential -and challenges- from multiple dom ains: new automotive powertrain topologies with increased degrees of freedom and controllability, which can be approached with innovative Machine Learning algorithm concepts, being implementable by exploiting the computational capacity of modern heterogeneous embedded platforms and automated toolchains. The complex relations among these three domains that enable the potential for great enhancements, do contrast with the fourth domain in this context: challenging constraints brought by industrial aspects and safe ty regulations. The innovative control architecture that has been conce ived combines Neural Networks as Virtual Sensor for unmeasurable forces , with a multi-objective optimization function driven by Fuzzy Logic , which defines priorities basing on the real -time driving situation. The fundamental principle is to enhance vehicle dynamics by implementing a Torque Vectoring controller that prevents wheel slip using the inputs provided by the Neural Network. Complementary optimization objectives are effici ency, thermal stress and smoothness. Safety -critical concerns are addressed through architectural and functional measures.Two main phases can be identified across the activities and milestones achieved in this work. In a first phase, a baseline Torque Vectoring controller was implemented on an embedded platform and -benefiting from a seamless transition using Hardware-in -the -Loop - it was integrated into a real Motor -in -Wheel vehicle for race track tests. Having validated the concept, framework, methodology and models, a second simulation-based phase proceeds to develop the more sophisticated controller, targeting a more capable vehicle, leading to the final solution of this work. Besides, this concept was further evolved to support a joint research work which lead to outstanding FPGA and GPU based embedded implementations of Neural Networks. Ultimately, the different building blocks that compose this work have shown results that have met or exceeded the expectations, both on technical and conceptual level. The highly non-linear multi-variable (and multi-objective) control problem was tackled. Neural Network estimations are accurate, performance metrics in general -and vehicle dynamics and efficiency in particular- are clearly improved, Fuzzy Logic and optimization behave as expected, and efficient embedded implementation is shown to be viable. Consequently, the proposed control concept -and the surrounding solutions and enablers- have proven their qualities in what respects to functionality, performance, implementability and industry suitability.The most relevant contributions to be highlighted are firstly each of the algorithms and functions that are implemented in the controller solutions and , ultimately, the whole control concept itself with the architectural approaches it involves. Besides multiple enablers which are exploitable for future work have been provided, as well as an illustrative insight into the intricacies of a vivid technological context, showcasing how they can be harmonized. Furthermore, multiple international activities in both academic and professional contexts -which have provided enrichment as well as acknowledgement, for this work-, have led to several publications, two high-impact journal papers and collateral work products of diverse nature

    Real-time multi-domain optimization controller for multi-motor electric vehicles using automotive-suitable methods and heterogeneous embedded platforms

    Get PDF
    Los capítulos 2,3 y 7 están sujetos a confidencialidad por el autor. 145 p.In this Thesis, an elaborate control solution combining Machine Learning and Soft Computing techniques has been developed, targeting a chal lenging vehicle dynamics application aiming to optimize the torque distribution across the wheels with four independent electric motors.The technological context that has motivated this research brings together potential -and challenges- from multiple dom ains: new automotive powertrain topologies with increased degrees of freedom and controllability, which can be approached with innovative Machine Learning algorithm concepts, being implementable by exploiting the computational capacity of modern heterogeneous embedded platforms and automated toolchains. The complex relations among these three domains that enable the potential for great enhancements, do contrast with the fourth domain in this context: challenging constraints brought by industrial aspects and safe ty regulations. The innovative control architecture that has been conce ived combines Neural Networks as Virtual Sensor for unmeasurable forces , with a multi-objective optimization function driven by Fuzzy Logic , which defines priorities basing on the real -time driving situation. The fundamental principle is to enhance vehicle dynamics by implementing a Torque Vectoring controller that prevents wheel slip using the inputs provided by the Neural Network. Complementary optimization objectives are effici ency, thermal stress and smoothness. Safety -critical concerns are addressed through architectural and functional measures.Two main phases can be identified across the activities and milestones achieved in this work. In a first phase, a baseline Torque Vectoring controller was implemented on an embedded platform and -benefiting from a seamless transition using Hardware-in -the -Loop - it was integrated into a real Motor -in -Wheel vehicle for race track tests. Having validated the concept, framework, methodology and models, a second simulation-based phase proceeds to develop the more sophisticated controller, targeting a more capable vehicle, leading to the final solution of this work. Besides, this concept was further evolved to support a joint research work which lead to outstanding FPGA and GPU based embedded implementations of Neural Networks. Ultimately, the different building blocks that compose this work have shown results that have met or exceeded the expectations, both on technical and conceptual level. The highly non-linear multi-variable (and multi-objective) control problem was tackled. Neural Network estimations are accurate, performance metrics in general -and vehicle dynamics and efficiency in particular- are clearly improved, Fuzzy Logic and optimization behave as expected, and efficient embedded implementation is shown to be viable. Consequently, the proposed control concept -and the surrounding solutions and enablers- have proven their qualities in what respects to functionality, performance, implementability and industry suitability.The most relevant contributions to be highlighted are firstly each of the algorithms and functions that are implemented in the controller solutions and , ultimately, the whole control concept itself with the architectural approaches it involves. Besides multiple enablers which are exploitable for future work have been provided, as well as an illustrative insight into the intricacies of a vivid technological context, showcasing how they can be harmonized. Furthermore, multiple international activities in both academic and professional contexts -which have provided enrichment as well as acknowledgement, for this work-, have led to several publications, two high-impact journal papers and collateral work products of diverse nature
    corecore