57 research outputs found

    Hidden Markov Models in Dynamic System Modelling and Diagnosis

    Get PDF

    Hidden Markov Models

    Get PDF
    Hidden Markov Models (HMMs), although known for decades, have made a big career nowadays and are still in state of development. This book presents theoretical issues and a variety of HMMs applications in speech recognition and synthesis, medicine, neurosciences, computational biology, bioinformatics, seismology, environment protection and engineering. I hope that the reader will find this book useful and helpful for their own research

    Speech Recognition

    Get PDF
    Chapters in the first part of the book cover all the essential speech processing techniques for building robust, automatic speech recognition systems: the representation for speech signals and the methods for speech-features extraction, acoustic and language modeling, efficient algorithms for searching the hypothesis space, and multimodal approaches to speech recognition. The last part of the book is devoted to other speech processing applications that can use the information from automatic speech recognition for speaker identification and tracking, for prosody modeling in emotion-detection systems and in other speech processing applications that are able to operate in real-world environments, like mobile communication services and smart homes

    An integrated approach to feature compensation combining particle filters and Hidden Markov Models for robust speech recognition

    Get PDF
    The performance of automatic speech recognition systems often degrades in adverse conditions where there is a mismatch between training and testing conditions. This is true for most modern systems which employ Hidden Markov Models (HMMs) to decode speech utterances. One strategy is to map the distorted features back to clean speech features that correspond well to the features used for training of HMMs. This can be achieved by treating the noisy speech as the distorted version of the clean speech of interest. Under this framework, we can track and consequently extract the underlying clean speech from the noisy signal and use this derived signal to perform utterance recognition. Particle filter is a versatile tracking technique that can be used where often conventional techniques such as Kalman filter fall short. We propose a particle filters based algorithm to compensate the corrupted features according to an additive noise model incorporating both the statistics from clean speech HMMs and observed background noise to map noisy features back to clean speech features. Instead of using specific knowledge at the model and state levels from HMMs which is hard to estimate, we pool model states into clusters as side information. Since each cluster encompasses more statistics when compared to the original HMM states, there is a higher possibility that the newly formed probability density function at the cluster level can cover the underlying speech variation to generate appropriate particle filter samples for feature compensation. Additionally, a dynamic joint tracking framework to monitor the clean speech signal and noise simultaneously is also introduced to obtain good noise statistics. In this approach, the information available from clean speech tracking can be effectively used for noise estimation. The availability of dynamic noise information can enhance the robustness of the algorithm in case of large fluctuations in noise parameters within an utterance. Testing the proposed PF-based compensation scheme on the Aurora 2 connected digit recognition task, we achieve an error reduction of 12.15% from the best multi-condition trained models using this integrated PF-HMM framework to estimate the cluster-based HMM state sequence information. Finally, we extended the PFC framework and evaluated it on a large-vocabulary recognition task, and showed that PFC works well for large-vocabulary systems also.Ph.D

    Robust gesture recognition

    Get PDF
    It is a challenging problem to make a general hand gesture recognition system work in a practical operation environment. In this study, it is mainly focused on recognizing English letters and digits performed near the steering wheel of a car and captured by a video camera. Like most human computer interaction (HCI) scenarios, the in-car gesture recognition suffers from various robustness issues, including multiple human factors and highly varying lighting conditions. It therefore brings up quite a few research issues to be addressed. First, multiple gesturing alternatives may share the same meaning, which is not typical in most previous systems. Next, gestures may not be the same as expected because users cannot see what exactly has been written, which increases the gesture diversity significantly.In addition, varying illumination conditions will make hand detection trivial and thus result in noisy hand gestures. And most severely, users will tend to perform letters at a fast pace, which may result in lack of frames for well-describing gestures. Since users are allowed to perform gestures in free-style, multiple alternatives and variations should be considered while modeling gestures. The main contribution of this work is to analyze and address these challenging issues step-by-step such that eventually the robustness of the whole system can be effectively improved. By choosing color-space representation and performing the compensation techniques for varying recording conditions, the hand detection performance for multiple illumination conditions is first enhanced. Furthermore, the issues of low frame rate and different gesturing tempo will be separately resolved via the cubic B-spline interpolation and i-vector method for feature extraction. Finally, remaining issues will be handled by other modeling techniques such as sub-letter stroke modeling. According to experimental results based on the above strategies, the proposed framework clearly improved the system robustness and thus encouraged the future research direction on exploring more discriminative features and modeling techniques.Ph.D

    Supervised Sequence Labelling with Recurrent Neural Networks

    Full text link
    corecore