761 research outputs found

    Discriminative speaker recognition using Large Margin GMM

    Get PDF
    International audienceMost state-of-the-art speaker recognition systems are based on discriminative learning approaches. On the other hand, generative Gaussian mixture models (GMM) have been widely used in speaker recognition during the last decades. In an earlier work, we proposed an algorithm for discriminative training of GMM with diagonal covariances under a large margin criterion. In this paper, we propose an improvement of this algorithm which has the major advantage of being computationally highly efficient, thus well suited to handle large scale databases. We also develop a new strategy to detect and handle the outliers that occur in the training data. To evaluate the performances of our new algorithm, we carry out full NIST speaker identification and verification tasks using NIST-SRE'2006 data, in a Symmetrical Factor Analysis compensation scheme. The results show that our system significantly outperforms the traditional discriminative Support Vector Machines (SVM) based system of SVM-GMM supervectors, in the two speaker recognition tasks

    Combination of SVM and Large Margin GMM modeling for speaker identification

    Get PDF
    International audienceMost state-of-the-art speaker recognition systems are partially or completely based on Gaussian mixture models (GMM). GMM have been widely and successfully used in speaker recognition during the last decades. They are traditionally estimated from a world model using the generative criterion of Maximum A Posteriori. In an earlier work, we proposed an efficient algorithm for discriminative learning of GMM with diagonal covariances under a large margin criterion. In this paper, we evaluate the combination of the large margin GMM modeling approach with SVM in the setting of speaker identification. We carry out a full NIST speaker identification task using NIST-SRE'2006 data, in a Symmetrical Factor Analysis compensation scheme. The results show that the two modeling approaches are complementary and that their combination outperforms their single use

    Fast training of Large Margin diagonal Gaussian mixture models for speaker identification

    Get PDF
    International audienceGaussian mixture models (GMM) have been widely and successfully used in speaker recognition during the last decades. They are generally trained using the generative criterion of maximum likelihood estimation. In an earlier work, we proposed an algorithm for discriminative training of GMM with diagonal covariances under a large margin criterion. In this paper, we present a new version of this algorithm which has the major advantage of being computationally highly efficient. The resulting algorithm is thus well suited to handle large scale databases. We carry out experiments on a speaker identification task using NIST-SRE'2006 data and compare our new algorithm to the baseline generative GMM using different GMM sizes. The results show that our system significantly outperforms the baseline GMM in all configurations, and with high computational efficiency

    Apprentissage discriminant des GMM à grande marge pour la vérification automatique du locuteur

    Get PDF
    National audienceGaussian mixture models (GMM) have been widely and successfully used in speaker recognition during the last decades. They are generally trained using the generative criterion of maximum likelihood estimation. In an earlier work, we proposed an algorithm for discriminative training of GMM with diagonal covariances under a large margin criterion. In this paper, we present a new version of this algorithm which has the major advantage of being computationally highly efficient. The resulting algorithm is thus well suited to handle large scale databases. To show the effectiveness of the new algorithm, we carry out a full NIST speaker verification task using NIST-SRE'2006 data. The results show that our system outperforms the baseline GMM, and with high computational efficiency

    Speaker verification using Large Margin GMM discriminative training

    Get PDF
    International audienceGaussian mixture models (GMM) have been widely and successfully used in speaker recognition during the last decades. They are generally trained using the generative criterion of maximum likelihood estimation. In an earlier work, we proposed an algorithm for discriminative training of GMM with diagonal covariances under a large margin criterion. In this paper, we present a new version of this algorithm which has the major advantage of being computationally highly efficient. The resulting algorithm is thus well suited to handle large scale databases. To show the effectiveness of the new algorithm, we carry out a full NIST speaker verification task using NISTSRE' 2006 data. The results show that our system outperforms the baseline GMM, and with high computational efficiency

    Large Margin GMM for discriminative speaker verifi cation

    Get PDF
    International audienceGaussian mixture models (GMM), trained using the generative cri- terion of maximum likelihood estimation, have been the most popular ap- proach in speaker recognition during the last decades. This approach is also widely used in many other classi cation tasks and applications. Generative learning in not however the optimal way to address classi cation problems. In this paper we rst present a new algorithm for discriminative learning of diagonal GMM under a large margin criterion. This algorithm has the ma- jor advantage of being highly e cient, which allow fast discriminative GMM training using large scale databases. We then evaluate its performances on a full NIST speaker veri cation task using NIST-SRE'2006 data. In particular, we use the popular Symmetrical Factor Analysis (SFA) for session variability compensation. The results show that our system outperforms the state-of-the- art approaches of GMM-SFA and the SVM-based one, GSL-NAP. Relative reductions of the Equal Error Rate of about 9.33% and 14.88% are respec- tively achieved over these systems

    Reconnaissance automatique du locuteur par des GMM Ă  grande marge

    Get PDF
    Depuis plusieurs dizaines d'annĂ©es, la reconnaissance automatique du locuteur (RAL) fait l'objet de travaux de recherche entrepris par de nombreuses Ă©quipes dans le monde. La majoritĂ© des systĂšmes actuels sont basĂ©s sur l'utilisation des ModĂšles de MĂ©lange de lois Gaussiennes (GMM) et/ou des modĂšles discriminants SVM, i.e., les machines Ă  vecteurs de support. Nos travaux ont pour objectif gĂ©nĂ©ral la proposition d'utiliser de nouveaux modĂšles GMM Ă  grande marge pour la RAL qui soient une alternative aux modĂšles GMM gĂ©nĂ©ratifs classiques et Ă  l'approche discriminante Ă©tat de l'art GMM-SVM. Nous appelons ces modĂšles LM-dGMM pour Large Margin diagonal GMM. Nos modĂšles reposent sur une rĂ©cente technique discriminante pour la sĂ©paration multi-classes, qui a Ă©tĂ© appliquĂ©e en reconnaissance de la parole. Exploitant les propriĂ©tĂ©s des systĂšmes GMM utilisĂ©s en RAL, nous prĂ©sentons dans cette thĂšse des variantes d'algorithmes d'apprentissage discriminant des GMM minimisant une fonction de perte Ă  grande marge. Des tests effectuĂ©s sur les tĂąches de reconnaissance du locuteur de la campagne d'Ă©valuation NIST-SRE 2006 dĂ©montrent l'intĂ©rĂȘt de ces modĂšles en reconnaissance.Most of state-of-the-art speaker recognition systems are based on Gaussian Mixture Models (GMM), trained using maximum likelihood estimation and maximum a posteriori (MAP) estimation. The generative training of the GMM does not however directly optimize the classification performance. For this reason, discriminative models, e.g., Support Vector Machines (SVM), have been an interesting alternative since they address directly the classification problem, and they lead to good performances. Recently a new discriminative approach for multiway classification has been proposed, the Large Margin Gaussian mixture models (LM-GMM). As in SVM, the parameters of LM-GMM are trained by solving a convex optimization problem. However they differ from SVM by using ellipsoids to model the classes directly in the input space, instead of half-spaces in an extended high-dimensional space. While LM-GMM have been used in speech recognition, they have not been used in speaker recognition (to the best of our knowledge). In this thesis, we propose simplified, fast and more efficient versions of LM-GMM which exploit the properties and characteristics of speaker recognition applications and systems, the LM-dGMM models. In our LM-dGMM modeling, each class is initially modeled by a GMM trained by MAP adaptation of a Universal Background Model (UBM) or directly initialized by the UBM. The models mean vectors are then re-estimated under some Large Margin constraints. We carried out experiments on full speaker recognition tasks under the NIST-SRE 2006 core condition. The experimental results are very satisfactory and show that our Large Margin modeling approach is very promising

    Speaker verification using sequence discriminant support vector machines

    Get PDF
    This paper presents a text-independent speaker verification system using support vector machines (SVMs) with score-space kernels. Score-space kernels generalize Fisher kernels and are based on underlying generative models such as Gaussian mixture models (GMMs). This approach provides direct discrimination between whole sequences, in contrast with the frame-level approaches at the heart of most current systems. The resultant SVMs have a very high dimensionality since it is related to the number of parameters in the underlying generative model. To address problems that arise in the resultant optimization we introduce a technique called spherical normalization that preconditions the Hessian matrix. We have performed speaker verification experiments using the PolyVar database. The SVM system presented here reduces the relative error rates by 34% compared to a GMM likelihood ratio system

    Exploring the Encoding Layer and Loss Function in End-to-End Speaker and Language Recognition System

    Full text link
    In this paper, we explore the encoding/pooling layer and loss function in the end-to-end speaker and language recognition system. First, a unified and interpretable end-to-end system for both speaker and language recognition is developed. It accepts variable-length input and produces an utterance level result. In the end-to-end system, the encoding layer plays a role in aggregating the variable-length input sequence into an utterance level representation. Besides the basic temporal average pooling, we introduce a self-attentive pooling layer and a learnable dictionary encoding layer to get the utterance level representation. In terms of loss function for open-set speaker verification, to get more discriminative speaker embedding, center loss and angular softmax loss is introduced in the end-to-end system. Experimental results on Voxceleb and NIST LRE 07 datasets show that the performance of end-to-end learning system could be significantly improved by the proposed encoding layer and loss function.Comment: Accepted for Speaker Odyssey 201
    • 

    corecore