239 research outputs found

    Joint morphological-lexical language modeling for processing morphologically rich languages with application to dialectal Arabic

    Get PDF
    Language modeling for an inflected language such as Arabic poses new challenges for speech recognition and machine translation due to its rich morphology. Rich morphology results in large increases in out-of-vocabulary (OOV) rate and poor language model parameter estimation in the absence of large quantities of data. In this study, we present a joint morphological-lexical language model (JMLLM) that takes advantage of Arabic morphology. JMLLM combines morphological segments with the underlying lexical items and additional available information sources with regards to morphological segments and lexical items in a single joint model. Joint representation and modeling of morphological and lexical items reduces the OOV rate and provides smooth probability estimates while keeping the predictive power of whole words. Speech recognition and machine translation experiments in dialectal-Arabic show improvements over word and morpheme based trigram language models. We also show that as the tightness of integration between different information sources increases, both speech recognition and machine translation performances improve

    An enhanced automatic speech recognition system for Arabic

    Get PDF
    International audienceAutomatic speech recognition for Arabic is a very challenging task. Despite all the classical techniques for Automatic Speech Recognition (ASR), which can be efficiently applied to Arabic speech recognition , it is essential to take into consideration the language specificities to improve the system performance. In this article, we focus on Modern Standard Arabic (MSA) speech recognition. We introduce the challenges related to Arabic language, namely the complex morphology nature of the language and the absence of the short vowels in written text, which leads to several potential vowelization for each graphemes, which is often conflicting. We develop an ASR system for MSA by using Kaldi toolkit. Several acoustic and language models are trained. We obtain a Word Error Rate (WER) of 14.42 for the baseline system and 12.2 relative improvement by rescoring the lattice and by rewriting the output with the right hamoza above or below Alif
    corecore