1,294 research outputs found

    Object Tracking

    Get PDF
    Object tracking consists in estimation of trajectory of moving objects in the sequence of images. Automation of the computer object tracking is a difficult task. Dynamics of multiple parameters changes representing features and motion of the objects, and temporary partial or full occlusion of the tracked objects have to be considered. This monograph presents the development of object tracking algorithms, methods and systems. Both, state of the art of object tracking methods and also the new trends in research are described in this book. Fourteen chapters are split into two sections. Section 1 presents new theoretical ideas whereas Section 2 presents real-life applications. Despite the variety of topics contained in this monograph it constitutes a consisted knowledge in the field of computer object tracking. The intention of editor was to follow up the very quick progress in the developing of methods as well as extension of the application

    Online Structured Learning for Real-Time Computer Vision Gaming Applications

    Get PDF
    In recent years computer vision has played an increasingly important role in the development of computer games, and it now features as one of the core technologies for many gaming platforms. The work in this thesis addresses three problems in real-time computer vision, all of which are motivated by their potential application to computer games. We rst present an approach for real-time 2D tracking of arbitrary objects. In common with recent research in this area we incorporate online learning to provide an appearance model which is able to adapt to the target object and its surrounding background during tracking. However, our approach moves beyond the standard framework of tracking using binary classication and instead integrates tracking and learning in a more principled way through the use of structured learning. As well as providing a more powerful framework for adaptive visual object tracking, our approach also outperforms state-of-the-art tracking algorithms on standard datasets. Next we consider the task of keypoint-based object tracking. We take the traditional pipeline of matching keypoints followed by geometric verication and show how this can be embedded into a structured learning framework in order to provide principled adaptivity to a given environment. We also propose an approximation method allowing us to take advantage of recently developed binary image descriptors, meaning our approach is suitable for real-time application even on low-powered portable devices. Experimentally, we clearly see the benet that online adaptation using structured learning can bring to this problem. Finally, we present an approach for approximately recovering the dense 3D structure of a scene which has been mapped by a simultaneous localisation and mapping system. Our approach is guided by the constraints of the low-powered portable hardware we are targeting, and we develop a system which coarsely models the scene using a small number of planes. To achieve this, we frame the task as a structured prediction problem and introduce online learning into our approach to provide adaptivity to a given scene. This allows us to use relatively simple multi-view information coupled with online learning of appearance to efficiently produce coarse reconstructions of a scene

    Keyframe-based monocular SLAM: design, survey, and future directions

    Get PDF
    Extensive research in the field of monocular SLAM for the past fifteen years has yielded workable systems that found their way into various applications in robotics and augmented reality. Although filter-based monocular SLAM systems were common at some time, the more efficient keyframe-based solutions are becoming the de facto methodology for building a monocular SLAM system. The objective of this paper is threefold: first, the paper serves as a guideline for people seeking to design their own monocular SLAM according to specific environmental constraints. Second, it presents a survey that covers the various keyframe-based monocular SLAM systems in the literature, detailing the components of their implementation, and critically assessing the specific strategies made in each proposed solution. Third, the paper provides insight into the direction of future research in this field, to address the major limitations still facing monocular SLAM; namely, in the issues of illumination changes, initialization, highly dynamic motion, poorly textured scenes, repetitive textures, map maintenance, and failure recovery

    tracker independent drift detection and correction using segmented objects and features

    Get PDF
    Object tracking has been an active research topic in the field of video processing. However, automated object tracking, under uncontrolled environments, is still difficult to achieve and encounters various challenges that cause the tracker to drift away from the target object. %Object tracking methods with fixed models, that are predefined prior to the tracking task, normally fail because of the inevitable appearance changes that can be either object or environment-related. To effectively handle object or environment tracking challenges, recent powerful tracking approaches are learning-based, meaning they learn object appearance changes while tracking online. The output of such trackers is, however, limited to a bounding box representation, the center of which is considered as the estimated object location. Such bounding box may not provide accurate foreground/background discrimination and may not handle highly non-rigid objects. Moreover, the bounding box may not surround the object completely, or it may not be centered around it, which affects the accuracy of the overall tracking process. Our main objective in this work is to reduce drifts of state-of-the-art tracking algorithms (trackers) using object segmentation so to produce more accurate bounding box. To enhance the quality of state-of-the-art trackers, this work investigates two main venues: first tracker-independent drift detection and correction using object features and second, selection of best performing parameters of Graph Cut object segmentation and of support vector machines using artificial immune system. In addition, this work proposes a framework for the evaluation and ranking of different trackers using easily interpretable performance measures, in a way to account for the presence of outliers. For tracker-independent drift detection, we use saliency features or objectness using saliency, the ratio of the salient region corresponding to the target object with respect to the estimated bounding box is used to indicate the occurrence of tracking drift with no prior information about the target model. With objectness measures, we use both relative area and score of the detected candidate boxes according to the objectness measure to indicate the occurrenece of the tracking drift. For drift correction, we investigate the application of object segmentation on the estimated bounding box to re-locate it around the target object. Due to its ability to lead to a global near optimal solution, we use the Graph Cut object segmentation method. We modify the Graph Cut model to incorporate an automatic seed selection module based on interest points, in addition to a template mask, to automatically initialize the segmentation across frames. However, the integration of segmentation in the tracking loop has its computational burden. In addition, the segmentation quality might be affected by tracking challenges, such as motion blur and occlusion. Accordingly, object segmentation is applied only when a drift is detected. Simulation results show that the proposed approach improves the tracking quality of five recent trackers. Researchers often use long and tedious trial and error approaches for determining the best performing parameter configuration of a video-processing algorithm, particularly with the diverse nature of video sequences. However, such configuration does not guarantee the best performance. A little research attention has been given to study the algorithm's sensitivity to its parameters. Artificial immune system is an emergent biologically motivated computing paradigm that has the ability to reach optimal or near-optimal solutions through mutation and cloning. This work proposes the use of artificial immune system for the selection of best performing parameters of two video processing algorithms: support vector machines for object tracking and Graph Cut based object segmentation. An increasing number of trackers are being developed and when introducing a new tracker, it is important to facilitate its evaluation and ranking in relation to others, using easy to interpret performance measures. Recent studies have shown that some measures are correlated and cannot reflect the different aspects of tracking performance when used individually. In addition, they do not incorporate robust statistics to account for the presence of outliers that might lead to insignificant results. This work proposes a framework for effective scoring and ranking of different trackers by using less correlated quality metrics, coupled with a robust estimator against dispersion. In addition, a unified performance index is proposed to facilitate the evaluation process

    Hand pose recognition using a consumer depth camera

    Get PDF
    [no abstract

    Visualization and Correction of Automated Segmentation, Tracking and Lineaging from 5-D Stem Cell Image Sequences

    Get PDF
    Results: We present an application that enables the quantitative analysis of multichannel 5-D (x, y, z, t, channel) and large montage confocal fluorescence microscopy images. The image sequences show stem cells together with blood vessels, enabling quantification of the dynamic behaviors of stem cells in relation to their vascular niche, with applications in developmental and cancer biology. Our application automatically segments, tracks, and lineages the image sequence data and then allows the user to view and edit the results of automated algorithms in a stereoscopic 3-D window while simultaneously viewing the stem cell lineage tree in a 2-D window. Using the GPU to store and render the image sequence data enables a hybrid computational approach. An inference-based approach utilizing user-provided edits to automatically correct related mistakes executes interactively on the system CPU while the GPU handles 3-D visualization tasks. Conclusions: By exploiting commodity computer gaming hardware, we have developed an application that can be run in the laboratory to facilitate rapid iteration through biological experiments. There is a pressing need for visualization and analysis tools for 5-D live cell image data. We combine accurate unsupervised processes with an intuitive visualization of the results. Our validation interface allows for each data set to be corrected to 100% accuracy, ensuring that downstream data analysis is accurate and verifiable. Our tool is the first to combine all of these aspects, leveraging the synergies obtained by utilizing validation information from stereo visualization to improve the low level image processing tasks.Comment: BioVis 2014 conferenc

    Computational Modeling for Abnormal Brain Tissue Segmentation, Brain Tumor Tracking, and Grading

    Get PDF
    This dissertation proposes novel texture feature-based computational models for quantitative analysis of abnormal tissues in two neurological disorders: brain tumor and stroke. Brain tumors are the cells with uncontrolled growth in the brain tissues and one of the major causes of death due to cancer. On the other hand, brain strokes occur due to the sudden interruption of the blood supply which damages the normal brain tissues and frequently causes death or persistent disability. Clinical management of these brain tumors and stroke lesions critically depends on robust quantitative analysis using different imaging modalities including Magnetic Resonance (MR) and Digital Pathology (DP) images. Due to uncontrolled growth and infiltration into the surrounding tissues, the tumor regions appear with a significant texture variation in the static MRI volume and also in the longitudinal imaging study. Consequently, this study developed computational models using novel texture features to segment abnormal brain tissues (tumor, and stroke lesions), tracking the change of tumor volume in longitudinal images, and tumor grading in MR images. Manual delineation and analysis of these abnormal tissues in large scale is tedious, error-prone, and often suffers from inter-observer variability. Therefore, efficient computational models for robust segmentation of different abnormal tissues is required to support the diagnosis and analysis processes. In this study, brain tissues are characterized with novel computational modeling of multi-fractal texture features for multi-class brain tumor tissue segmentation (BTS) and extend the method for ischemic stroke lesions in MRI. The robustness of the proposed segmentation methods is evaluated using a huge amount of private and public domain clinical data that offers competitive performance when compared with that of the state-of-the-art methods. Further, I analyze the dynamic texture behavior of tumor volume in longitudinal imaging and develop post-processing frame-work using three-dimensional (3D) texture features. These post-processing methods are shown to reduce the false positives in the BTS results and improve the overall segmentation result in longitudinal imaging. Furthermore, using this improved segmentation results the change of tumor volume has been quantified in three types such as stable, progress, and shrinkage as observed by the volumetric changes of different tumor tissues in longitudinal images. This study also investigates a novel non-invasive glioma grading, for the first time in literature, that uses structural MRI only. Such non-invasive glioma grading may be useful before an invasive biopsy is recommended. This study further developed an automatic glioma grading scheme using the invasive cell nuclei morphology in DP images for cross-validation with the same patients. In summary, the texture-based computational models proposed in this study are expected to facilitate the clinical management of patients with the brain tumors and strokes by automating large scale imaging data analysis, reducing human error, inter-observer variability, and producing repeatable brain tumor quantitation and grading
    • …
    corecore