6,026 research outputs found

    Hybrid Models with Deep and Invertible Features

    Full text link
    We propose a neural hybrid model consisting of a linear model defined on a set of features computed by a deep, invertible transformation (i.e. a normalizing flow). An attractive property of our model is that both p(features), the density of the features, and p(targets | features), the predictive distribution, can be computed exactly in a single feed-forward pass. We show that our hybrid model, despite the invertibility constraints, achieves similar accuracy to purely predictive models. Moreover the generative component remains a good model of the input features despite the hybrid optimization objective. This offers additional capabilities such as detection of out-of-distribution inputs and enabling semi-supervised learning. The availability of the exact joint density p(targets, features) also allows us to compute many quantities readily, making our hybrid model a useful building block for downstream applications of probabilistic deep learning.Comment: ICML 201

    Toward Optimal Feature Selection in Naive Bayes for Text Categorization

    Full text link
    Automated feature selection is important for text categorization to reduce the feature size and to speed up the learning process of classifiers. In this paper, we present a novel and efficient feature selection framework based on the Information Theory, which aims to rank the features with their discriminative capacity for classification. We first revisit two information measures: Kullback-Leibler divergence and Jeffreys divergence for binary hypothesis testing, and analyze their asymptotic properties relating to type I and type II errors of a Bayesian classifier. We then introduce a new divergence measure, called Jeffreys-Multi-Hypothesis (JMH) divergence, to measure multi-distribution divergence for multi-class classification. Based on the JMH-divergence, we develop two efficient feature selection methods, termed maximum discrimination (MDMD) and MD−χ2MD-\chi^2 methods, for text categorization. The promising results of extensive experiments demonstrate the effectiveness of the proposed approaches.Comment: This paper has been submitted to the IEEE Trans. Knowledge and Data Engineering. 14 pages, 5 figure

    Discrete MDL Predicts in Total Variation

    Get PDF
    The Minimum Description Length (MDL) principle selects the model that has the shortest code for data plus model. We show that for a countable class of models, MDL predictions are close to the true distribution in a strong sense. The result is completely general. No independence, ergodicity, stationarity, identifiability, or other assumption on the model class need to be made. More formally, we show that for any countable class of models, the distributions selected by MDL (or MAP) asymptotically predict (merge with) the true measure in the class in total variation distance. Implications for non-i.i.d. domains like time-series forecasting, discriminative learning, and reinforcement learning are discussed.Comment: 15 LaTeX page
    • …
    corecore