428 research outputs found

    Supervised Dictionary Learning and Sparse Representation-A Review

    Full text link
    Dictionary learning and sparse representation (DLSR) is a recent and successful mathematical model for data representation that achieves state-of-the-art performance in various fields such as pattern recognition, machine learning, computer vision, and medical imaging. The original formulation for DLSR is based on the minimization of the reconstruction error between the original signal and its sparse representation in the space of the learned dictionary. Although this formulation is optimal for solving problems such as denoising, inpainting, and coding, it may not lead to optimal solution in classification tasks, where the ultimate goal is to make the learned dictionary and corresponding sparse representation as discriminative as possible. This motivated the emergence of a new category of techniques, which is appropriately called supervised dictionary learning and sparse representation (S-DLSR), leading to more optimal dictionary and sparse representation in classification tasks. Despite many research efforts for S-DLSR, the literature lacks a comprehensive view of these techniques, their connections, advantages and shortcomings. In this paper, we address this gap and provide a review of the recently proposed algorithms for S-DLSR. We first present a taxonomy of these algorithms into six categories based on the approach taken to include label information into the learning of the dictionary and/or sparse representation. For each category, we draw connections between the algorithms in this category and present a unified framework for them. We then provide guidelines for applied researchers on how to represent and learn the building blocks of an S-DLSR solution based on the problem at hand. This review provides a broad, yet deep, view of the state-of-the-art methods for S-DLSR and allows for the advancement of research and development in this emerging area of research

    Learning Discriminative Multilevel Structured Dictionaries for Supervised Image Classification

    Full text link
    Sparse representations using overcomplete dictionaries have proved to be a powerful tool in many signal processing applications such as denoising, super-resolution, inpainting, compression or classification. The sparsity of the representation very much depends on how well the dictionary is adapted to the data at hand. In this paper, we propose a method for learning structured multilevel dictionaries with discriminative constraints to make them well suited for the supervised pixelwise classification of images. A multilevel tree-structured discriminative dictionary is learnt for each class, with a learning objective concerning the reconstruction errors of the image patches around the pixels over each class-representative dictionary. After the initial assignment of the class labels to image pixels based on their sparse representations over the learnt dictionaries, the final classification is achieved by smoothing the label image with a graph cut method and an erosion method. Applied to a common set of texture images, our supervised classification method shows competitive results with the state of the art

    Greedy Deep Dictionary Learning

    Full text link
    In this work we propose a new deep learning tool called deep dictionary learning. Multi-level dictionaries are learnt in a greedy fashion, one layer at a time. This requires solving a simple (shallow) dictionary learning problem, the solution to this is well known. We apply the proposed technique on some benchmark deep learning datasets. We compare our results with other deep learning tools like stacked autoencoder and deep belief network; and state of the art supervised dictionary learning tools like discriminative KSVD and label consistent KSVD. Our method yields better results than all

    Discriminative Nonlinear Analysis Operator Learning: When Cosparse Model Meets Image Classification

    Full text link
    Linear synthesis model based dictionary learning framework has achieved remarkable performances in image classification in the last decade. Behaved as a generative feature model, it however suffers from some intrinsic deficiencies. In this paper, we propose a novel parametric nonlinear analysis cosparse model (NACM) with which a unique feature vector will be much more efficiently extracted. Additionally, we derive a deep insight to demonstrate that NACM is capable of simultaneously learning the task adapted feature transformation and regularization to encode our preferences, domain prior knowledge and task oriented supervised information into the features. The proposed NACM is devoted to the classification task as a discriminative feature model and yield a novel discriminative nonlinear analysis operator learning framework (DNAOL). The theoretical analysis and experimental performances clearly demonstrate that DNAOL will not only achieve the better or at least competitive classification accuracies than the state-of-the-art algorithms but it can also dramatically reduce the time complexities in both training and testing phases.Comment: IEEE TIP Accepte

    Structured Dictionary Learning for Classification

    Full text link
    Sparsity driven signal processing has gained tremendous popularity in the last decade. At its core, the assumption is that the signal of interest is sparse with respect to either a fixed transformation or a signal dependent dictionary. To better capture the data characteristics, various dictionary learning methods have been proposed for both reconstruction and classification tasks. For classification particularly, most approaches proposed so far have focused on designing explicit constraints on the sparse code to improve classification accuracy while simply adopting l0l_0-norm or l1l_1-norm for sparsity regularization. Motivated by the success of structured sparsity in the area of Compressed Sensing, we propose a structured dictionary learning framework (StructDL) that incorporates the structure information on both group and task levels in the learning process. Its benefits are two-fold: (i) the label consistency between dictionary atoms and training data are implicitly enforced; and (ii) the classification performance is more robust in the cases of a small dictionary size or limited training data than other techniques. Using the subspace model, we derive the conditions for StructDL to guarantee the performance and show theoretically that StructDL is superior to l0l_0-norm or l1l_1-norm regularized dictionary learning for classification. Extensive experiments have been performed on both synthetic simulations and real world applications, such as face recognition and object classification, to demonstrate the validity of the proposed DL framework

    Jointly Learning Non-negative Projection and Dictionary with Discriminative Graph Constraints for Classification

    Full text link
    Sparse coding with dictionary learning (DL) has shown excellent classification performance. Despite the considerable number of existing works, how to obtain features on top of which dictionaries can be better learned remains an open and interesting question. Many current prevailing DL methods directly adopt well-performing crafted features. While such strategy may empirically work well, it ignores certain intrinsic relationship between dictionaries and features. We propose a framework where features and dictionaries are jointly learned and optimized. The framework, named joint non-negative projection and dictionary learning (JNPDL), enables interaction between the input features and the dictionaries. The non-negative projection leads to discriminative parts-based object features while DL seeks a more suitable representation. Discriminative graph constraints are further imposed to simultaneously maximize intra-class compactness and inter-class separability. Experiments on both image and image set classification show the excellent performance of JNPDL by outperforming several state-of-the-art approaches.Comment: To appear in BMVC 201

    Joint Projection and Dictionary Learning using Low-rank Regularization and Graph Constraints

    Full text link
    In this paper, we aim at learning simultaneously a discriminative dictionary and a robust projection matrix from noisy data. The joint learning, makes the learned projection and dictionary a better fit for each other, so a more accurate classification can be obtained. However, current prevailing joint dimensionality reduction and dictionary learning methods, would fail when the training samples are noisy or heavily corrupted. To address this issue, we propose a joint projection and dictionary learning using low-rank regularization and graph constraints (JPDL-LR). Specifically, the discrimination of the dictionary is achieved by imposing Fisher criterion on the coding coefficients. In addition, our method explicitly encodes the local structure of data by incorporating a graph regularization term, that further improves the discriminative ability of the projection matrix. Inspired by recent advances of low-rank representation for removing outliers and noise, we enforce a low-rank constraint on sub-dictionaries of all classes to make them more compact and robust to noise. Experimental results on several benchmark datasets verify the effectiveness and robustness of our method for both dimensionality reduction and image classification, especially when the data contains considerable noise or variations

    Discriminative Bayesian Dictionary Learning for Classification

    Full text link
    We propose a Bayesian approach to learn discriminative dictionaries for sparse representation of data. The proposed approach infers probability distributions over the atoms of a discriminative dictionary using a Beta Process. It also computes sets of Bernoulli distributions that associate class labels to the learned dictionary atoms. This association signifies the selection probabilities of the dictionary atoms in the expansion of class-specific data. Furthermore, the non-parametric character of the proposed approach allows it to infer the correct size of the dictionary. We exploit the aforementioned Bernoulli distributions in separately learning a linear classifier. The classifier uses the same hierarchical Bayesian model as the dictionary, which we present along the analytical inference solution for Gibbs sampling. For classification, a test instance is first sparsely encoded over the learned dictionary and the codes are fed to the classifier. We performed experiments for face and action recognition; and object and scene-category classification using five public datasets and compared the results with state-of-the-art discriminative sparse representation approaches. Experiments show that the proposed Bayesian approach consistently outperforms the existing approaches.Comment: 15 page

    A Study on Unsupervised Dictionary Learning and Feature Encoding for Action Classification

    Full text link
    Many efforts have been devoted to develop alternative methods to traditional vector quantization in image domain such as sparse coding and soft-assignment. These approaches can be split into a dictionary learning phase and a feature encoding phase which are often closely connected. In this paper, we investigate the effects of these phases by separating them for video-based action classification. We compare several dictionary learning methods and feature encoding schemes through extensive experiments on KTH and HMDB51 datasets. Experimental results indicate that sparse coding performs consistently better than the other encoding methods in large complex dataset (i.e., HMDB51), and it is robust to different dictionaries. For small simple dataset (i.e., KTH) with less variation, however, all the encoding strategies perform competitively. In addition, we note that the strength of sophisticated encoding approaches comes not from their corresponding dictionaries but the encoding mechanisms, and we can just use randomly selected exemplars as dictionaries for video-based action classification

    Scalable Block-Diagonal Locality-Constrained Projective Dictionary Learning

    Full text link
    We propose a novel structured discriminative block-diagonal dictionary learning method, referred to as scalable Locality-Constrained Projective Dictionary Learning (LC-PDL), for efficient representation and classification. To improve the scalability by saving both training and testing time, our LC-PDL aims at learning a structured discriminative dictionary and a block-diagonal representation without using costly l0/l1-norm. Besides, it avoids extra time-consuming sparse reconstruction process with the well-trained dictionary for new sample as many existing models. More importantly, LC-PDL avoids using the complementary data matrix to learn the sub-dictionary over each class. To enhance the performance, we incorporate a locality constraint of atoms into the DL procedures to keep local information and obtain the codes of samples over each class separately. A block-diagonal discriminative approximation term is also derived to learn a discriminative projection to bridge data with their codes by extracting the special block-diagonal features from data, which can ensure the approximate coefficients to associate with its label information clearly. Then, a robust multiclass classifier is trained over extracted block-diagonal codes for accurate label predictions. Experimental results verify the effectiveness of our algorithm.Comment: Accepted at the 28th International Joint Conference on Artificial Intelligence(IJCAI 2019
    • …
    corecore