9,718 research outputs found

    Discriminative and adaptive training for robust speech recognition and understanding

    Get PDF
    Robust automatic speech recognition (ASR) and understanding (ASU) under various conditions remains to be a challenging problem even with the advances of deep learning. To achieve robust ASU, two discriminative training objectives are proposed for keyword spotting and topic classification: (1) To accurately recognize the semantically important keywords, the non-uniform error cost minimum classification error training of deep neural network (DNN) and bi-directional long short-term memory (BLSTM) acoustic models is proposed to minimize the recognition errors of only the keywords. (2) To compensate for the mismatched objectives of speech recognition and understanding, minimum semantic error cost training of the BLSTM acoustic model is proposed to generate semantically accurate lattices for topic classification. Further, to expand the application of the ASU system to various conditions, four adaptive training approaches are proposed to improve the robustness of the ASR under different conditions: (1) To suppress the effect of inter-speaker variability on speaker-independent DNN acoustic model, speaker-invariant training is proposed to learn a deep representation in the DNN that is both senone-discriminative and speaker-invariant through adversarial multi-task training (2) To achieve condition-robust unsupervised adaptation with parallel data, adversarial teacher-student learning is proposed to suppress multiple factors of condition variability in the procedure of knowledge transfer from a well-trained source domain LSTM acoustic model to the target domain. (3) To further improve the adversarial learning for unsupervised adaptation with unparallel data, domain separation networks are used to enhance the domain-invariance of the senone-discriminative deep representation by explicitly modeling the private component that is unique to each domain. (4) To achieve robust far-field ASR, an LSTM adaptive beamforming network is proposed to estimate the real-time beamforming filter coefficients to cope with non-stationary environmental noise and dynamic nature of source and microphones positions.Ph.D

    Deep Learning for Environmentally Robust Speech Recognition: An Overview of Recent Developments

    Get PDF
    Eliminating the negative effect of non-stationary environmental noise is a long-standing research topic for automatic speech recognition that stills remains an important challenge. Data-driven supervised approaches, including ones based on deep neural networks, have recently emerged as potential alternatives to traditional unsupervised approaches and with sufficient training, can alleviate the shortcomings of the unsupervised methods in various real-life acoustic environments. In this light, we review recently developed, representative deep learning approaches for tackling non-stationary additive and convolutional degradation of speech with the aim of providing guidelines for those involved in the development of environmentally robust speech recognition systems. We separately discuss single- and multi-channel techniques developed for the front-end and back-end of speech recognition systems, as well as joint front-end and back-end training frameworks

    Learning Adaptive Discriminative Correlation Filters via Temporal Consistency Preserving Spatial Feature Selection for Robust Visual Tracking

    Get PDF
    With efficient appearance learning models, Discriminative Correlation Filter (DCF) has been proven to be very successful in recent video object tracking benchmarks and competitions. However, the existing DCF paradigm suffers from two major issues, i.e., spatial boundary effect and temporal filter degradation. To mitigate these challenges, we propose a new DCF-based tracking method. The key innovations of the proposed method include adaptive spatial feature selection and temporal consistent constraints, with which the new tracker enables joint spatial-temporal filter learning in a lower dimensional discriminative manifold. More specifically, we apply structured spatial sparsity constraints to multi-channel filers. Consequently, the process of learning spatial filters can be approximated by the lasso regularisation. To encourage temporal consistency, the filter model is restricted to lie around its historical value and updated locally to preserve the global structure in the manifold. Last, a unified optimisation framework is proposed to jointly select temporal consistency preserving spatial features and learn discriminative filters with the augmented Lagrangian method. Qualitative and quantitative evaluations have been conducted on a number of well-known benchmarking datasets such as OTB2013, OTB50, OTB100, Temple-Colour, UAV123 and VOT2018. The experimental results demonstrate the superiority of the proposed method over the state-of-the-art approaches
    • …
    corecore