21,665 research outputs found

    A Supervised Neural Autoregressive Topic Model for Simultaneous Image Classification and Annotation

    Full text link
    Topic modeling based on latent Dirichlet allocation (LDA) has been a framework of choice to perform scene recognition and annotation. Recently, a new type of topic model called the Document Neural Autoregressive Distribution Estimator (DocNADE) was proposed and demonstrated state-of-the-art performance for document modeling. In this work, we show how to successfully apply and extend this model to the context of visual scene modeling. Specifically, we propose SupDocNADE, a supervised extension of DocNADE, that increases the discriminative power of the hidden topic features by incorporating label information into the training objective of the model. We also describe how to leverage information about the spatial position of the visual words and how to embed additional image annotations, so as to simultaneously perform image classification and annotation. We test our model on the Scene15, LabelMe and UIUC-Sports datasets and show that it compares favorably to other topic models such as the supervised variant of LDA.Comment: 13 pages, 5 figure

    A Deep and Autoregressive Approach for Topic Modeling of Multimodal Data

    Full text link
    Topic modeling based on latent Dirichlet allocation (LDA) has been a framework of choice to deal with multimodal data, such as in image annotation tasks. Another popular approach to model the multimodal data is through deep neural networks, such as the deep Boltzmann machine (DBM). Recently, a new type of topic model called the Document Neural Autoregressive Distribution Estimator (DocNADE) was proposed and demonstrated state-of-the-art performance for text document modeling. In this work, we show how to successfully apply and extend this model to multimodal data, such as simultaneous image classification and annotation. First, we propose SupDocNADE, a supervised extension of DocNADE, that increases the discriminative power of the learned hidden topic features and show how to employ it to learn a joint representation from image visual words, annotation words and class label information. We test our model on the LabelMe and UIUC-Sports data sets and show that it compares favorably to other topic models. Second, we propose a deep extension of our model and provide an efficient way of training the deep model. Experimental results show that our deep model outperforms its shallow version and reaches state-of-the-art performance on the Multimedia Information Retrieval (MIR) Flickr data set.Comment: 24 pages, 10 figures. A version has been accepted by TPAMI on Aug 4th, 2015. Add footnote about how to train the model in practice in Section 5.1. arXiv admin note: substantial text overlap with arXiv:1305.530

    Altitude Training: Strong Bounds for Single-Layer Dropout

    Full text link
    Dropout training, originally designed for deep neural networks, has been successful on high-dimensional single-layer natural language tasks. This paper proposes a theoretical explanation for this phenomenon: we show that, under a generative Poisson topic model with long documents, dropout training improves the exponent in the generalization bound for empirical risk minimization. Dropout achieves this gain much like a marathon runner who practices at altitude: once a classifier learns to perform reasonably well on training examples that have been artificially corrupted by dropout, it will do very well on the uncorrupted test set. We also show that, under similar conditions, dropout preserves the Bayes decision boundary and should therefore induce minimal bias in high dimensions.Comment: Advances in Neural Information Processing Systems (NIPS), 201

    Perception Driven Texture Generation

    Full text link
    This paper investigates a novel task of generating texture images from perceptual descriptions. Previous work on texture generation focused on either synthesis from examples or generation from procedural models. Generating textures from perceptual attributes have not been well studied yet. Meanwhile, perceptual attributes, such as directionality, regularity and roughness are important factors for human observers to describe a texture. In this paper, we propose a joint deep network model that combines adversarial training and perceptual feature regression for texture generation, while only random noise and user-defined perceptual attributes are required as input. In this model, a preliminary trained convolutional neural network is essentially integrated with the adversarial framework, which can drive the generated textures to possess given perceptual attributes. An important aspect of the proposed model is that, if we change one of the input perceptual features, the corresponding appearance of the generated textures will also be changed. We design several experiments to validate the effectiveness of the proposed method. The results show that the proposed method can produce high quality texture images with desired perceptual properties.Comment: 7 pages, 4 figures, icme201
    • …
    corecore