226 research outputs found

    Robustness, Heterogeneity and Structure Capturing for Graph Representation Learning and its Application

    Get PDF
    Graph neural networks (GNNs) are potent methods for graph representation learn- ing (GRL), which extract knowledge from complicated (graph) structured data in various real-world scenarios. However, GRL still faces many challenges. Firstly GNN-based node classification may deteriorate substantially by overlooking the pos- sibility of noisy data in graph structures, as models wrongly process the relation among nodes in the input graphs as the ground truth. Secondly, nodes and edges have different types in the real-world and it is essential to capture this heterogeneity in graph representation learning. Next, relations among nodes are not restricted to pairwise relations and it is necessary to capture the complex relations accordingly. Finally, the absence of structural encodings, such as positional information, deterio- rates the performance of GNNs. This thesis proposes novel methods to address the aforementioned problems: 1. Bayesian Graph Attention Network (BGAT): Developed for situations with scarce data, this method addresses the influence of spurious edges. Incor- porating Bayesian principles into the graph attention mechanism enhances robustness, leading to competitive performance against benchmarks (Chapter 3). 2. Neighbour Contrastive Heterogeneous Graph Attention Network (NC-HGAT): By enhancing a cutting-edge self-supervised heterogeneous graph neural net- work model (HGAT) with neighbour contrastive learning, this method ad- dresses heterogeneity and uncertainty simultaneously. Extra attention to edge relations in heterogeneous graphs also aids in subsequent classification tasks (Chapter 4). 3. A novel ensemble learning framework is introduced for predicting stock price movements. It adeptly captures both group-level and pairwise relations, lead- ing to notable advancements over the existing state-of-the-art. The integration of hypergraph and graph models, coupled with the utilisation of auxiliary data via GNNs before recurrent neural network (RNN), provides a deeper under- standing of long-term dependencies between similar entities in multivariate time series analysis (Chapter 5). 4. A novel framework for graph structure learning is introduced, segmenting graphs into distinct patches. By harnessing the capabilities of transformers and integrating other position encoding techniques, this approach robustly capture intricate structural information within a graph. This results in a more comprehensive understanding of its underlying patterns (Chapter 6)

    Multidisciplinary perspectives on Artificial Intelligence and the law

    Get PDF
    This open access book presents an interdisciplinary, multi-authored, edited collection of chapters on Artificial Intelligence (‘AI’) and the Law. AI technology has come to play a central role in the modern data economy. Through a combination of increased computing power, the growing availability of data and the advancement of algorithms, AI has now become an umbrella term for some of the most transformational technological breakthroughs of this age. The importance of AI stems from both the opportunities that it offers and the challenges that it entails. While AI applications hold the promise of economic growth and efficiency gains, they also create significant risks and uncertainty. The potential and perils of AI have thus come to dominate modern discussions of technology and ethics – and although AI was initially allowed to largely develop without guidelines or rules, few would deny that the law is set to play a fundamental role in shaping the future of AI. As the debate over AI is far from over, the need for rigorous analysis has never been greater. This book thus brings together contributors from different fields and backgrounds to explore how the law might provide answers to some of the most pressing questions raised by AI. An outcome of the Católica Research Centre for the Future of Law and its interdisciplinary working group on Law and Artificial Intelligence, it includes contributions by leading scholars in the fields of technology, ethics and the law.info:eu-repo/semantics/publishedVersio

    Using machine learning to predict pathogenicity of genomic variants throughout the human genome

    Get PDF
    Geschätzt mehr als 6.000 Erkrankungen werden durch Veränderungen im Genom verursacht. Ursachen gibt es viele: Eine genomische Variante kann die Translation eines Proteins stoppen, die Genregulation stören oder das Spleißen der mRNA in eine andere Isoform begünstigen. All diese Prozesse müssen überprüft werden, um die zum beschriebenen Phänotyp passende Variante zu ermitteln. Eine Automatisierung dieses Prozesses sind Varianteneffektmodelle. Mittels maschinellem Lernen und Annotationen aus verschiedenen Quellen bewerten diese Modelle genomische Varianten hinsichtlich ihrer Pathogenität. Die Entwicklung eines Varianteneffektmodells erfordert eine Reihe von Schritten: Annotation der Trainingsdaten, Auswahl von Features, Training verschiedener Modelle und Selektion eines Modells. Hier präsentiere ich ein allgemeines Workflow dieses Prozesses. Dieses ermöglicht es den Prozess zu konfigurieren, Modellmerkmale zu bearbeiten, und verschiedene Annotationen zu testen. Der Workflow umfasst außerdem die Optimierung von Hyperparametern, Validierung und letztlich die Anwendung des Modells durch genomweites Berechnen von Varianten-Scores. Der Workflow wird in der Entwicklung von Combined Annotation Dependent Depletion (CADD), einem Varianteneffektmodell zur genomweiten Bewertung von SNVs und InDels, verwendet. Durch Etablierung des ersten Varianteneffektmodells für das humane Referenzgenome GRCh38 demonstriere ich die gewonnenen Möglichkeiten Annotationen aufzugreifen und neue Modelle zu trainieren. Außerdem zeige ich, wie Deep-Learning-Scores als Feature in einem CADD-Modell die Vorhersage von RNA-Spleißing verbessern. Außerdem werden Varianteneffektmodelle aufgrund eines neuen, auf Allelhäufigkeit basierten, Trainingsdatensatz entwickelt. Diese Ergebnisse zeigen, dass der entwickelte Workflow eine skalierbare und flexible Möglichkeit ist, um Varianteneffektmodelle zu entwickeln. Alle entstandenen Scores sind unter cadd.gs.washington.edu und cadd.bihealth.org frei verfügbar.More than 6,000 diseases are estimated to be caused by genomic variants. This can happen in many possible ways: a variant may stop the translation of a protein, interfere with gene regulation, or alter splicing of the transcribed mRNA into an unwanted isoform. It is necessary to investigate all of these processes in order to evaluate which variant may be causal for the deleterious phenotype. A great help in this regard are variant effect scores. Implemented as machine learning classifiers, they integrate annotations from different resources to rank genomic variants in terms of pathogenicity. Developing a variant effect score requires multiple steps: annotation of the training data, feature selection, model training, benchmarking, and finally deployment for the model's application. Here, I present a generalized workflow of this process. It makes it simple to configure how information is converted into model features, enabling the rapid exploration of different annotations. The workflow further implements hyperparameter optimization, model validation and ultimately deployment of a selected model via genome-wide scoring of genomic variants. The workflow is applied to train Combined Annotation Dependent Depletion (CADD), a variant effect model that is scoring SNVs and InDels genome-wide. I show that the workflow can be quickly adapted to novel annotations by porting CADD to the genome reference GRCh38. Further, I demonstrate the integration of deep-neural network scores as features into a new CADD model, improving the annotation of RNA splicing events. Finally, I apply the workflow to train multiple variant effect models from training data that is based on variants selected by allele frequency. In conclusion, the developed workflow presents a flexible and scalable method to train variant effect scores. All software and developed scores are freely available from cadd.gs.washington.edu and cadd.bihealth.org

    The Democratization of News - Analysis and Behavior Modeling of Users in the Context of Online News Consumption

    Get PDF
    Die Erfindung des Internets ebnete den Weg für die Demokratisierung von Information. Die Tatsache, dass Nachrichten für die breite Öffentlichkeit zugänglicher wurden, barg wichtige politische Versprechen, wie zum Beispiel das Erreichen von zuvor uninformierten und daher oft inaktiven Bürgern. Diese konnten sich nun dank des Internets tagesaktuell über das politische Geschehen informieren und selbst politisch engagieren. Während viele Politiker und Journalisten ein Jahrzehnt lang mit dieser Entwicklung zufrieden waren, änderte sich die Situation mit dem Aufkommen der sozialen Online-Netzwerke (OSN). Diese OSNs sind heute nahezu allgegenwärtig – so beziehen inzwischen 67%67\% der Amerikaner zumindest einen Teil ihrer Nachrichten über die sozialen Medien. Dieser Trend hat die Kosten für die Veröffentlichung von Inhalten weiter gesenkt. Dies sah zunächst nach einer positiven Entwicklung aus, stellt inzwischen jedoch ein ernsthaftes Problem für Demokratien dar. Anstatt dass eine schier unendliche Menge an leicht zugänglichen Informationen uns klüger machen, wird die Menge an Inhalten zu einer Belastung. Eine ausgewogene Nachrichtenauswahl muss einer Flut an Beiträgen und Themen weichen, die durch das digitale soziale Umfeld des Nutzers gefiltert werden. Dies fördert die politische Polarisierung und ideologische Segregation. Mehr als die Hälfte der OSN-Nutzer trauen zudem den Nachrichten, die sie lesen, nicht mehr (54%54\% machen sich Sorgen wegen Falschnachrichten). In dieses Bild passt, dass Studien berichten, dass Nutzer von OSNs dem Populismus extrem linker und rechter politischer Akteure stärker ausgesetzt sind, als Personen ohne Zugang zu sozialen Medien. Um die negativen Effekt dieser Entwicklung abzumildern, trägt meine Arbeit zum einen zum Verständnis des Problems bei und befasst sich mit Grundlagenforschung im Bereich der Verhaltensmodellierung. Abschließend beschäftigen wir uns mit der Gefahr der Beeinflussung der Internetnutzer durch soziale Bots und präsentieren eine auf Verhaltensmodellierung basierende Lösung. Zum besseren Verständnis des Nachrichtenkonsums deutschsprachiger Nutzer in OSNs, haben wir deren Verhalten auf Twitter analysiert und die Reaktionen auf kontroverse - teils verfassungsfeindliche - und nicht kontroverse Inhalte verglichen. Zusätzlich untersuchten wir die Existenz von Echokammern und ähnlichen Phänomenen. Hinsichtlich des Nutzerverhaltens haben wir uns auf Netzwerke konzentriert, die ein komplexeres Nutzerverhalten zulassen. Wir entwickelten probabilistische Verhaltensmodellierungslösungen für das Clustering und die Segmentierung von Zeitserien. Neben den Beiträgen zum Verständnis des Problems haben wir Lösungen zur Erkennung automatisierter Konten entwickelt. Diese Bots nehmen eine wichtige Rolle in der frühen Phase der Verbreitung von Fake News ein. Unser Expertenmodell - basierend auf aktuellen Deep-Learning-Lösungen - identifiziert, z. B., automatisierte Accounts anhand ihres Verhaltens. Meine Arbeit sensibilisiert für diese negative Entwicklung und befasst sich mit der Grundlagenforschung im Bereich der Verhaltensmodellierung. Auch wird auf die Gefahr der Beeinflussung durch soziale Bots eingegangen und eine auf Verhaltensmodellierung basierende Lösung präsentiert

    Learning from imperfect data : incremental learning and Few-shot Learning

    Get PDF
    In recent years, artificial intelligence (AI) has achieved great success in many fields, e.g., computer vision, speech recognition, recommendation engines, and neural language processing. Although impressive advances have been made, AI algorithms still suffer from an important limitation: they rely on large-scale datasets. In contrast, human beings naturally possess the ability to learn novel knowledge from real-world and imperfect data such as a small number of samples or a non-static continual data stream. Attaining such an ability is particularly appealing. Specifically, an ideal AI system with human-level intelligence should work with the following imperfect data scenarios. 1)~The training data distribution changes while learning. In many real scenarios, data are streaming, might disappear after a given period of time, or even can not be stored at all due to storage constraints or privacy issues. As a consequence, the old knowledge is over-written, a phenomenon called catastrophic forgetting. 2)~The annotations of the training data are sparse. There are also many scenarios where we do not have access to the specific large-scale data of interest due to privacy and security reasons. As a consequence, the deep models overfit the training data distribution and are very likely to make wrong decisions when they encounter rare cases. Therefore, the goal of this thesis is to tackle the challenges and develop AI algorithms that can be trained with imperfect data. To achieve the above goal, we study three topics in this thesis. 1)~Learning with continual data without forgetting (i.e., incremental learning). 2)~Learning with limited data without overfitting (i.e., few-shot learning). 3)~Learning with imperfect data in real-world applications (e.g., incremental object detection). Our key idea is learning to learn/optimize. Specifically, we use advanced learning and optimization techniques to design data-driven methods to dynamically adapt the key elements in AI algorithms, e.g., selection of data, memory allocation, network architecture, essential hyperparameters, and control of knowledge transfer. We believe that the adaptive and dynamic design of system elements will significantly improve the capability of deep learning systems under limited data or continual streams, compared to the systems with fixed and non-optimized elements. More specifically, we first study how to overcome the catastrophic forgetting problem by learning to optimize exemplar data, allocate memory, aggregate neural networks, and optimize key hyperparameters. Then, we study how to improve the generalization ability of the model and tackle the overfitting problem by learning to transfer knowledge and ensemble deep models. Finally, we study how to apply incremental learning techniques to the recent top-performance transformer-based architecture for a more challenging and realistic vision, incremental object detection.Künstliche Intelligenz (KI) hat in den letzten Jahren in vielen Bereichen große Erfolge erzielt, z. B. Computer Vision, Spracherkennung, Empfehlungsmaschinen und neuronale Sprachverarbeitung. Obwohl beeindruckende Fortschritte erzielt wurden, leiden KI-Algorithmen immer noch an einer wichtigen Einschränkung: Sie sind auf umfangreiche Datensätze angewiesen. Im Gegensatz dazu besitzen Menschen von Natur aus die Fähigkeit, neuartiges Wissen aus realen und unvollkommenen Daten wie einer kleinen Anzahl von Proben oder einem nicht statischen kontinuierlichen Datenstrom zu lernen. Das Erlangen einer solchen Fähigkeit ist besonders reizvoll. Insbesondere sollte ein ideales KI-System mit Intelligenz auf menschlicher Ebene mit den folgenden unvollkommenen Datenszenarien arbeiten. 1)~Die Verteilung der Trainingsdaten ändert sich während des Lernens. In vielen realen Szenarien werden Daten gestreamt, können nach einer bestimmten Zeit verschwinden oder können aufgrund von Speicherbeschränkungen oder Datenschutzproblemen überhaupt nicht gespeichert werden. Infolgedessen wird das alte Wissen überschrieben, ein Phänomen, das als katastrophales Vergessen bezeichnet wird. 2)~Die Anmerkungen der Trainingsdaten sind spärlich. Es gibt auch viele Szenarien, in denen wir aus Datenschutz- und Sicherheitsgründen keinen Zugriff auf die spezifischen großen Daten haben, die von Interesse sind. Infolgedessen passen die tiefen Modelle zu stark an die Verteilung der Trainingsdaten an und treffen sehr wahrscheinlich falsche Entscheidungen, wenn sie auf seltene Fälle stoßen. Daher ist das Ziel dieser Arbeit, die Herausforderungen anzugehen und KI-Algorithmen zu entwickeln, die mit unvollkommenen Daten trainiert werden können. Um das obige Ziel zu erreichen, untersuchen wir in dieser Arbeit drei Themen. 1)~Lernen mit kontinuierlichen Daten ohne Vergessen (d. h. inkrementelles Lernen). 2) ~ Lernen mit begrenzten Daten ohne Überanpassung (d. h. Lernen mit wenigen Schüssen). 3) ~ Lernen mit unvollkommenen Daten in realen Anwendungen (z. B. inkrementelle Objekterkennung). Unser Leitgedanke ist Lernen lernen/optimieren. Insbesondere verwenden wir fortschrittliche Lern- und Optimierungstechniken, um datengesteuerte Methoden zu entwerfen, um die Schlüsselelemente in KI-Algorithmen dynamisch anzupassen, z. B. Auswahl von Daten, Speicherzuweisung, Netzwerkarchitektur, wesentliche Hyperparameter und Steuerung des Wissenstransfers. Wir glauben, dass das adaptive und dynamische Design von Systemelementen die Leistungsfähigkeit von Deep-Learning-Systemen bei begrenzten Daten oder kontinuierlichen Streams im Vergleich zu Systemen mit festen und nicht optimierten Elementen erheblich verbessern wird. Genauer gesagt untersuchen wir zunächst, wie das katastrophale Vergessensproblem überwunden werden kann, indem wir lernen, Beispieldaten zu optimieren, Speicher zuzuweisen, neuronale Netze zu aggregieren und wichtige Hyperparameter zu optimieren. Dann untersuchen wir, wie die Verallgemeinerungsfähigkeit des Modells verbessert und das Overfitting-Problem angegangen werden kann, indem wir lernen, Wissen zu übertragen und tiefe Modelle in Ensembles zusammenzufassen. Schließlich untersuchen wir, wie man inkrementelle Lerntechniken auf die jüngste transformatorbasierte Hochleistungsarchitektur für eine anspruchsvollere und realistischere Vision, inkrementelle Objekterkennung, anwendet

    Systematic Approaches for Telemedicine and Data Coordination for COVID-19 in Baja California, Mexico

    Get PDF
    Conference proceedings info: ICICT 2023: 2023 The 6th International Conference on Information and Computer Technologies Raleigh, HI, United States, March 24-26, 2023 Pages 529-542We provide a model for systematic implementation of telemedicine within a large evaluation center for COVID-19 in the area of Baja California, Mexico. Our model is based on human-centric design factors and cross disciplinary collaborations for scalable data-driven enablement of smartphone, cellular, and video Teleconsul-tation technologies to link hospitals, clinics, and emergency medical services for point-of-care assessments of COVID testing, and for subsequent treatment and quar-antine decisions. A multidisciplinary team was rapidly created, in cooperation with different institutions, including: the Autonomous University of Baja California, the Ministry of Health, the Command, Communication and Computer Control Center of the Ministry of the State of Baja California (C4), Colleges of Medicine, and the College of Psychologists. Our objective is to provide information to the public and to evaluate COVID-19 in real time and to track, regional, municipal, and state-wide data in real time that informs supply chains and resource allocation with the anticipation of a surge in COVID-19 cases. RESUMEN Proporcionamos un modelo para la implementación sistemática de la telemedicina dentro de un gran centro de evaluación de COVID-19 en el área de Baja California, México. Nuestro modelo se basa en factores de diseño centrados en el ser humano y colaboraciones interdisciplinarias para la habilitación escalable basada en datos de tecnologías de teleconsulta de teléfonos inteligentes, celulares y video para vincular hospitales, clínicas y servicios médicos de emergencia para evaluaciones de COVID en el punto de atención. pruebas, y para el tratamiento posterior y decisiones de cuarentena. Rápidamente se creó un equipo multidisciplinario, en cooperación con diferentes instituciones, entre ellas: la Universidad Autónoma de Baja California, la Secretaría de Salud, el Centro de Comando, Comunicaciones y Control Informático. de la Secretaría del Estado de Baja California (C4), Facultades de Medicina y Colegio de Psicólogos. Nuestro objetivo es proporcionar información al público y evaluar COVID-19 en tiempo real y rastrear datos regionales, municipales y estatales en tiempo real que informan las cadenas de suministro y la asignación de recursos con la anticipación de un aumento de COVID-19. 19 casos.ICICT 2023: 2023 The 6th International Conference on Information and Computer Technologieshttps://doi.org/10.1007/978-981-99-3236-

    Development of unsupervised learning methods with applications to life sciences data

    Get PDF
    Machine Learning makes computers capable of performing tasks typically requiring human intelligence. A domain where it is having a considerable impact is the life sciences, allowing to devise new biological analysis protocols, develop patients’ treatments efficiently and faster, and reduce healthcare costs. This Thesis work presents new Machine Learning methods and pipelines for the life sciences focusing on the unsupervised field. At a methodological level, two methods are presented. The first is an “Ab Initio Local Principal Path” and it is a revised and improved version of a pre-existing algorithm in the manifold learning realm. The second contribution is an improvement over the Import Vector Domain Description (one-class learning) through the Kullback-Leibler divergence. It hybridizes kernel methods to Deep Learning obtaining a scalable solution, an improved probabilistic model, and state-of-the-art performances. Both methods are tested through several experiments, with a central focus on their relevance in life sciences. Results show that they improve the performances achieved by their previous versions. At the applicative level, two pipelines are presented. The first one is for the analysis of RNA-Seq datasets, both transcriptomic and single-cell data, and is aimed at identifying genes that may be involved in biological processes (e.g., the transition of tissues from normal to cancer). In this project, an R package is released on CRAN to make the pipeline accessible to the bioinformatic Community through high-level APIs. The second pipeline is in the drug discovery domain and is useful for identifying druggable pockets, namely regions of a protein with a high probability of accepting a small molecule (a drug). Both these pipelines achieve remarkable results. Lastly, a detour application is developed to identify the strengths/limitations of the “Principal Path” algorithm by analyzing Convolutional Neural Networks induced vector spaces. This application is conducted in the music and visual arts domains

    19th SC@RUG 2022 proceedings 2021-2022

    Get PDF
    corecore