1,554 research outputs found

    Expert Gate: Lifelong Learning with a Network of Experts

    Full text link
    In this paper we introduce a model of lifelong learning, based on a Network of Experts. New tasks / experts are learned and added to the model sequentially, building on what was learned before. To ensure scalability of this process,data from previous tasks cannot be stored and hence is not available when learning a new task. A critical issue in such context, not addressed in the literature so far, relates to the decision which expert to deploy at test time. We introduce a set of gating autoencoders that learn a representation for the task at hand, and, at test time, automatically forward the test sample to the relevant expert. This also brings memory efficiency as only one expert network has to be loaded into memory at any given time. Further, the autoencoders inherently capture the relatedness of one task to another, based on which the most relevant prior model to be used for training a new expert, with finetuning or learning without-forgetting, can be selected. We evaluate our method on image classification and video prediction problems.Comment: CVPR 2017 pape

    Deep Divergence-Based Approach to Clustering

    Get PDF
    A promising direction in deep learning research consists in learning representations and simultaneously discovering cluster structure in unlabeled data by optimizing a discriminative loss function. As opposed to supervised deep learning, this line of research is in its infancy, and how to design and optimize suitable loss functions to train deep neural networks for clustering is still an open question. Our contribution to this emerging field is a new deep clustering network that leverages the discriminative power of information-theoretic divergence measures, which have been shown to be effective in traditional clustering. We propose a novel loss function that incorporates geometric regularization constraints, thus avoiding degenerate structures of the resulting clustering partition. Experiments on synthetic benchmarks and real datasets show that the proposed network achieves competitive performance with respect to other state-of-the-art methods, scales well to large datasets, and does not require pre-training steps
    • …
    corecore