29 research outputs found

    Application of machine learning in predicting aggressive behaviors from hospitalized patients with schizophrenia

    Get PDF
    ObjectiveTo establish a predictive model of aggressive behaviors from hospitalized patients with schizophrenia through applying multiple machine learning algorithms, to provide a reference for accurately predicting and preventing of the occurrence of aggressive behaviors.MethodsThe cluster sampling method was used to select patients with schizophrenia who were hospitalized in our hospital from July 2019 to August 2021 as the survey objects, and they were divided into an aggressive behavior group (611 cases) and a non-aggressive behavior group (1,426 cases) according to whether they experienced obvious aggressive behaviors during hospitalization. Self-administered General Condition Questionnaire, Insight and Treatment Attitude Questionnaire (ITAQ), Family APGAR (Adaptation, Partnership, Growth, Affection, Resolve) Questionnaire (APGAR), Social Support Rating Scale Questionnaire (SSRS) and Family Burden Scale of Disease Questionnaire (FBS) were used for the survey. The Multi-layer Perceptron, Lasso, Support Vector Machine and Random Forest algorithms were used to build a predictive model for the occurrence of aggressive behaviors from hospitalized patients with schizophrenia and to evaluate its predictive effect. Nomogram was used to build a clinical application tool.ResultsThe area under the receiver operating characteristic curve (AUC) values of the Multi-Layer Perceptron, Lasso, Support Vector Machine, and Random Forest were 0.904 (95% CI: 0.877–0.926), 0.901 (95% CI: 0.874–0.923), 0.902 (95% CI: 0.876–0.924), and 0.955 (95% CI: 0.935–0.970), where the AUCs of the Random Forest and the remaining three models were statistically different (p < 0.0001), and the remaining three models were not statistically different in pair comparisons (p > 0.5).ConclusionMachine learning models can fairly predict aggressive behaviors in hospitalized patients with schizophrenia, among which Random Forest has the best predictive effect and has some value in clinical application

    Automatic risk evaluation in elderly patients based on Autonomic Nervous System assessment

    Get PDF
    Dysfunction of Autonomic Nervous System (ANS) is a typical feature of chronic heart failure and other cardiovascular disease. As a simple non-invasive technology, heart rate variability (HRV) analysis provides reliable information on autonomic modulation of heart rate. The aim of this thesis was to research and develop automatic methods based on ANS assessment for evaluation of risk in cardiac patients. Several features selection and machine learning algorithms have been combined to achieve the goals. Automatic assessment of disease severity in Congestive Heart Failure (CHF) patients: a completely automatic method, based on long-term HRV was proposed in order to automatically assess the severity of CHF, achieving a sensitivity rate of 93% and a specificity rate of 64% in discriminating severe versus mild patients. Automatic identification of hypertensive patients at high risk of vascular events: a completely automatic system was proposed in order to identify hypertensive patients at higher risk to develop vascular events in the 12 months following the electrocardiographic recordings, achieving a sensitivity rate of 71% and a specificity rate of 86% in identifying high-risk subjects among hypertensive patients. Automatic identification of hypertensive patients with history of fall: it was explored whether an automatic identification of fallers among hypertensive patients based on HRV was feasible. The results obtained in this thesis could have implications both in clinical practice and in clinical research. The system has been designed and developed in order to be clinically feasible. Moreover, since 5-minute ECG recording is inexpensive, easy to assess, and non-invasive, future research will focus on the clinical applicability of the system as a screening tool in non-specialized ambulatories, in order to identify high-risk patients to be shortlisted for more complex investigations

    Characterization and processing of novel neck photoplethysmography signals for cardiorespiratory monitoring

    Get PDF
    Epilepsy is a neurological disorder causing serious brain seizures that severely affect the patients' quality of life. Sudden unexpected death in epilepsy (SUDEP), for which no evident decease reason is found after post-mortem examination, is a common cause of mortality. The mechanisms leading to SUDEP are uncertain, but, centrally mediated apneic respiratory dysfunction, inducing dangerous hypoxemia, plays a key role. Continuous physiological monitoring appears as the only reliable solution for SUDEP prevention. However, current seizure-detection systems do not show enough sensitivity and present a high number of intolerable false alarms. A wearable system capable of measuring several physiological signals from the same body location, could efficiently overcome these limitations. In this framework, a neck wearable apnea detection device (WADD), sensing airflow through tracheal sounds, was designed. Despite the promising performance, it is still necessary to integrate an oximeter sensor into the system, to measure oxygen saturation in blood (SpO2) from neck photoplethysmography (PPG) signals, and hence, support the apnea detection decision. The neck is a novel PPG measurement site that has not yet been thoroughly explored, due to numerous challenges. This research work aims to characterize neck PPG signals, in order to fully exploit this alternative pulse oximetry location, for precise cardiorespiratory biomarkers monitoring. In this thesis, neck PPG signals were recorded, for the first time in literature, in a series of experiments under different artifacts and respiratory conditions. Morphological and spectral characteristics were analyzed in order to identify potential singularities of the signals. The most common neck PPG artifacts critically corrupting the signal quality, and other breathing states of interest, were thoroughly characterized in terms of the most discriminative features. An algorithm was further developed to differentiate artifacts from clean PPG signals. Both, the proposed characterization and classification model can be useful tools for researchers to denoise neck PPG signals and exploit them in a variety of clinical contexts. In addition to that, it was demonstrated that the neck also offered the possibility, unlike other body parts, to extract the Jugular Venous Pulse (JVP) non-invasively. Overall, the thesis showed how the neck could be an optimum location for multi-modal monitoring in the context of diseases affecting respiration, since it not only allows the sensing of airflow related signals, but also, the breathing frequency component of the PPG appeared more prominent than in the standard finger location. In this context, this property enabled the extraction of relevant features to develop a promising algorithm for apnea detection in near-real time. These findings could be of great importance for SUDEP prevention, facilitating the investigation of the mechanisms and risk factors associated to it, and ultimately reduce epilepsy mortality.Open Acces

    Seismocardiography - Genesis, and Utilization of Machine Learning for Variability Reduction and Improved Cardiac Health Monitoring

    Get PDF
    Seismocardiography (SCG) is the measured chest surface vibrations resulting from cardiac activity. Although SCG can contain information that correlate with cardiac health, its utility may be limited by lack of understanding of the signal genesis and a variability that can mask subtle SCG changes. The current research utilized medical imaging reconstruction and finite element method (FEM) to simulate SCG by modeling the propagation of myocardial movements to the chest surface. FEM analysis provided a link between myocardial movements and the SCG signals measured at the chest surface and suggested that myocardial movement is a primary source of SCG. Increased understanding of the sources and propagation of SCG may help increase the utility of SCG as a cardiac monitoring tool. To reduce the variability of SCG measured in human subjects, unsupervised machine learning (ML) was implemented to group SCG beats into clusters with minimal intra-cluster heterogeneity. The clustering helped reduce the SCG variability and unveiled consistent relations with the respiratory phases and SCG morphology. This clustering reduced noise in calculating signal features and provided additional useful features. The study also analyzed longitudinal SCG from heart failure (HF) patients in order to predict HF readmission. Here, many time- and frequency-domain SCG features were extracted. Certain features showed good correlations with readmission. Using supervised ML algorithms, high classification accuracies (up to 100%) were achieved suggesting high SCG utility for monitoring HF patients and possibly other heart conditions. Effective monitoring followed by timely intervention can lead to improved patient management and reduced mortality

    Intelligent Biosignal Processing in Wearable and Implantable Sensors

    Get PDF
    This reprint provides a collection of papers illustrating the state-of-the-art of smart processing of data coming from wearable, implantable or portable sensors. Each paper presents the design, databases used, methodological background, obtained results, and their interpretation for biomedical applications. Revealing examples are brain–machine interfaces for medical rehabilitation, the evaluation of sympathetic nerve activity, a novel automated diagnostic tool based on ECG data to diagnose COVID-19, machine learning-based hypertension risk assessment by means of photoplethysmography and electrocardiography signals, Parkinsonian gait assessment using machine learning tools, thorough analysis of compressive sensing of ECG signals, development of a nanotechnology application for decoding vagus-nerve activity, detection of liver dysfunction using a wearable electronic nose system, prosthetic hand control using surface electromyography, epileptic seizure detection using a CNN, and premature ventricular contraction detection using deep metric learning. Thus, this reprint presents significant clinical applications as well as valuable new research issues, providing current illustrations of this new field of research by addressing the promises, challenges, and hurdles associated with the synergy of biosignal processing and AI through 16 different pertinent studies. Covering a wide range of research and application areas, this book is an excellent resource for researchers, physicians, academics, and PhD or master students working on (bio)signal and image processing, AI, biomaterials, biomechanics, and biotechnology with applications in medicine

    Machine Learning Modelling of Critical Care Patients in the Intensive Care Units

    Get PDF
    The ICU is a fast-paced data-rich environment which treats the most critically ill patients. On average, over 15 % of patients admitted to the ICU amount in mortality. Therefore, machine learning (ML) is paramount to aiding the optimisation and inference of insight in critical care. In addition, the early and accurate evaluation of the severity at the time of admission is significant for physicians. Such evaluations make patient management more effective as they are more likely to predict whose physical conditions may worsen. Moreover, ML techniques could potentially enhance patients' experience in the clinical setting by providing medical alerts and insight into future events occurring during hospitalisation. The need for interpretable models is crucial in the ICU and clinical setting, as it is vital to explain a decision that leads to any course of action related to an individual patient. This thesis primarily focuses on mortality, length of stay forecasting, and AF classification in critical care. We cover multiple outcomes and modelling methods whilst using multiple cohorts throughout the research. However, the analysis conducted throughout the thesis aims to create interpretable models for each modelling objective. In Chapter 3, we investigate three publicly available critical care databases containing multiple modalities of data and a wide range of parameters. We describe the processes and contemplations which must be considered to create actionable data for analysis in the ICU. Furthermore, we compared the three data sources using traditional statistical and ML methods and compared predictive performance. Based on 24 hours of sequential data, we achieved AUC performances of 79.5% for ICU mortality prediction and a prediction error of approximately 1.3 hours for ICU LOS. In Chapter 4, we investigate a sepsis cohort and conduct three sub-studies. Firstly, we investigated sepsis subtypes and compared biomarkers using traditional modelling methods. Next, we compare our approach to commonly and routinely used scoring systems in the ICU, such as APACHE IV and SOFA. Our tailored approach achieved superior performance with pulmonary and abdominal sepsis (AUC 0.74 and 0.71respectivly), displaying distinct individualities amongst the different sepsis groups. Next, we further expand our analysis by comparing ML methods and inference approaches to our baseline model and ICU acuity scores. We further investigate extending analysis to other outcomes of interest (In-hospital/ICU mortality, In-hospital/ICU LOS) to gain a more holistic view of the sepsis derivatives. This research shows that nonlinear models such as RF and GBM commonly outperformICU scoring, methods such as APACHE IV and SOFA and linear methods such as logistic/linear regression. Lastly, we extend our analysis in a multi-task learning framework for model optimisation and improved predictive performance. Our results showed superior performance with pulmonary, abdominal and renal/UTI sepsis (AUC 0.76, 0.77 and 0.73, respectively). Lastly, Chapter 5 investigates the classification of atrial fibrillation (AF) in long-lead ECG waveforms in sepsis patients. We developed a deep neural network to classify AF ECGs from Non-AF ECG cases in conjunction with refining a method to gain insight from the neural network model. We achieved a predictive performance of 0.99 and 0.89 regarding the test and external validation data. The inference from the model was achieved through the use of saliency maps, dimensionality reduction methods and clustering, utilising the automatic features learned by the developed model. We developed visualisations to help support the inference behind the classification of each ECG prediction. Overall, the research displays a wide range of novelties and unique approaches to solving various outcomes of interest in the ICU. In addition, this research demonstrates the implication of ML applicability in the ICU environment by providing insight and inference to diverse tasks regardless of the level of complexity. With further development, the frameworks and approaches outlined in this thesis have the potential to be used in clinical practice as decision-support tools in the ICU, allowing the automated alert and detection of patient classification, amongst others. The results generated in this thesis resulted in journal publications and medical understanding gained from insight available in the developed ML frameworks

    Artificial Intelligence in Image-Based Screening, Diagnostics, and Clinical Care of Cardiopulmonary Diseases

    Get PDF
    Cardiothoracic and pulmonary diseases are a significant cause of mortality and morbidity worldwide. The COVID-19 pandemic has highlighted the lack of access to clinical care, the overburdened medical system, and the potential of artificial intelligence (AI) in improving medicine. There are a variety of diseases affecting the cardiopulmonary system including lung cancers, heart disease, tuberculosis (TB), etc., in addition to COVID-19-related diseases. Screening, diagnosis, and management of cardiopulmonary diseases has become difficult owing to the limited availability of diagnostic tools and experts, particularly in resource-limited regions. Early screening, accurate diagnosis and staging of these diseases could play a crucial role in treatment and care, and potentially aid in reducing mortality. Radiographic imaging methods such as computed tomography (CT), chest X-rays (CXRs), and echo ultrasound (US) are widely used in screening and diagnosis. Research on using image-based AI and machine learning (ML) methods can help in rapid assessment, serve as surrogates for expert assessment, and reduce variability in human performance. In this Special Issue, “Artificial Intelligence in Image-Based Screening, Diagnostics, and Clinical Care of Cardiopulmonary Diseases”, we have highlighted exemplary primary research studies and literature reviews focusing on novel AI/ML methods and their application in image-based screening, diagnosis, and clinical management of cardiopulmonary diseases. We hope that these articles will help establish the advancements in AI

    Multimodal Signal Processing for Diagnosis of Cardiorespiratory Disorders

    Get PDF
    This thesis addresses the use of multimodal signal processing to develop algorithms for the automated processing of two cardiorespiratory disorders. The aim of the first application of this thesis was to reduce false alarm rate in an intensive care unit. The goal was to detect five critical arrhythmias using processing of multimodal signals including photoplethysmography, arterial blood pressure, Lead II and augmented right arm electrocardiogram (ECG). A hierarchical approach was used to process the signals as well as a custom signal processing technique for each arrhythmia type. Sleep disorders are a prevalent health issue, currently costly and inconvenient to diagnose, as they normally require an overnight hospital stay by the patient. In the second application of this project, we designed automated signal processing algorithms for the diagnosis of sleep apnoea with a main focus on the ECG signal processing. We estimated the ECG-derived respiratory (EDR) signal using different methods: QRS-complex area, principal component analysis (PCA) and kernel PCA. We proposed two algorithms (segmented PCA and approximated PCA) for EDR estimation to enable applying the PCA method to overnight recordings and rectify the computational issues and memory requirement. We compared the EDR information against the chest respiratory effort signals. The performance was evaluated using three automated machine learning algorithms of linear discriminant analysis (LDA), extreme learning machine (ELM) and support vector machine (SVM) on two databases: the MIT PhysioNet database and the St. Vincent’s database. The results showed that the QRS area method for EDR estimation combined with the LDA classifier was the highest performing method and the EDR signals contain respiratory information useful for discriminating sleep apnoea. As a final step, heart rate variability (HRV) and cardiopulmonary coupling (CPC) features were extracted and combined with the EDR features and temporal optimisation techniques were applied. The cross-validation results of the minute-by-minute apnoea classification achieved an accuracy of 89%, a sensitivity of 90%, a specificity of 88%, and an AUC of 0.95 which is comparable to the best results reported in the literature
    corecore