1,786 research outputs found

    Evaluation of space SAR as a land-cover classification

    Get PDF
    The multidimensional approach to the mapping of land cover, crops, and forests is reported. Dimensionality is achieved by using data from sensors such as LANDSAT to augment Seasat and Shuttle Image Radar (SIR) data, using different image features such as tone and texture, and acquiring multidate data. Seasat, Shuttle Imaging Radar (SIR-A), and LANDSAT data are used both individually and in combination to map land cover in Oklahoma. The results indicates that radar is the best single sensor (72% accuracy) and produces the best sensor combination (97.5% accuracy) for discriminating among five land cover categories. Multidate Seasat data and a single data of LANDSAT coverage are then used in a crop classification study of western Kansas. The highest accuracy for a single channel is achieved using a Seasat scene, which produces a classification accuracy of 67%. Classification accuracy increases to approximately 75% when either a multidate Seasat combination or LANDSAT data in a multisensor combination is used. The tonal and textural elements of SIR-A data are then used both alone and in combination to classify forests into five categories

    Fire models and methods to map fuel types: The role of remote sensing.

    Get PDF
    Understanding fire is essential to improving forest management strategies. More specifically, an accurate knowledge of the spatial distribution of fuels is critical when analyzing, modelling and predicting fire behaviour. First, we review the main concepts and terminology associated with forest fuels and a number of fuel type classifications. Second, we summarize the main techniques employed to map fuel types starting with the most traditional approaches, such as field work, aerial photo interpretation or ecological modelling. We pay special attention to more contemporary techniques, which involve the use of remote sensing systems. In general, remote sensing systems are low-priced, can be regularly updated and are less time-consuming than traditional methods, but they are still facing important limitations. Recent work has shown that the integration of different sources of information andmethods in a complementary way helps to overcome most of these limitations. Further research is encouraged to develop novel and enhanced remote sensing techniques

    Spaceborne L-Band Synthetic Aperture Radar Data for Geoscientific Analyses in Coastal Land Applications: A Review

    Get PDF
    The coastal zone offers among the world’s most productive and valuable ecosystems and is experiencing increasing pressure from anthropogenic impacts: human settlements, agriculture, aquaculture, trade, industrial activities, oil and gas exploitation and tourism. Earth observation has great capability to deliver valuable data at the local, regional and global scales and can support the assessment and monitoring of land‐ and water‐related applications in coastal zones. Compared to optical satellites, cloud‐cover does not limit the timeliness of data acquisition with spaceborne Synthetic Aperture Radar (SAR) sensors, which have all‐weather, day and night capabilities. Hence, active radar systems demonstrate great potential for continuous mapping and monitoring of coastal regions, particularly in cloud‐prone tropical and sub‐tropical climates. The canopy penetration capability with long radar wavelength enables L‐band SAR data to be used for coastal terrestrial environments and has been widely applied and investigated for the following geoscientific topics: mapping and monitoring of flooded vegetation and inundated areas; the retrieval of aboveground biomass; and the estimation of soil moisture. Human activities, global population growth, urban sprawl and climate change‐induced impacts are leading to increased pressure on coastal ecosystems causing land degradation, deforestation and land use change. This review presents a comprehensive overview of existing research articles that apply spaceborne L‐band SAR data for geoscientific analyses that are relevant for coastal land applications

    Crown-level mapping of tree species and health from remote sensing of rural and urban forests

    Get PDF
    Tree species composition and health are key attributes for rural and urban forest biodiversity, and ecosystem services preservation. Remote sensing has facilitated extraordinary advances in estimating and mapping tree species composition and health. Yet previous sensors and algorithms were largely unable to resolve individual tree crowns and discriminate tree species or health classes at this essential spatial scale due to the low image spectral and spatial resolution. However, current available very high spatial resolution (VHR) remote sensing data can begin to resolve individual tree crowns and measure their spectral and structural qualities with unprecedented precision. Moreover, various machine learning algorithms are now available to apply these new data sources toward the discrimination and the mapping of tree species and health classes. The dissertation includes an introductory chapter, three stand-alone manuscripts, and a concluding chapter, each of which support the overarching theme of mapping tree species composition and health using remote sensing images. The first manuscript, now published in the International Journal of Remote Sensing, confirms the utility of combining VHR multi-temporal satellite data with LiDAR datasets for tree species classification using machine learning classifiers at the crown level in a rural forest the Fernow Experimental Forest, West Virginia. This research also evaluates the contribution of each type of spectral, phenological and structural feature for discriminating four tree species: red oak (Quercus rubra), sugar maple (Acer saccharum), tulip poplar (Liriodendron tulipifera), and black cherry (Prunus serotina). The second manuscript investigates the performance of tree species classification in urban settings with three contributions: 1) 12 very high resolution WorldView-3 images (WV-3), whose image acquisition date covering the growing season from April to November; 2) a large forest inventory providing sufficient calibration/validation datasets in Washington D.C.; 3) object-based tree species classification using the RandomForest machine learning algorithm. This manuscript identifies the incremental losses in classification accuracy caused by iteratively expanding the classification to 19 species and 10 genera. It also identifies the optimum pheno-phases and spectral bands for discriminating trees species in urban settings. Building on these promising results from the second manuscript, the third manuscript detect a signal of statistical difference among individual tree health conditions using WorldView-3 images from June 11th, July 30th and August 30th , 2017 in Washington D.C.. It examines six vegetation indices calculated from WorldView-3 images to describe three health condition levels in good, fair and poor, and discusses the effects of green-down phenology for tree health analysis. Overall, this dissertation research contributes to remote sensing research by combining data from both active and passive sensors to discriminate tree species in rural forest. For the species-rich urban settings, this dissertation illustrates the importance of phenology for tree species classification at crown level using VHR remote sensing images. Finally, this dissertation provides important insights on detecting statistical differences among tree health conditions at individual crown-level in the urban environment using VHR remote sensing images

    A Qualitative Study on Microwave Remote Sensing and Challenges Faced in India

    Get PDF
    Over the past few decades remote sensing has expanded its limits with exponential rise in technology that facilitates accurate data fetching in real time. In view of some of the major problems faced by developing nations, particularly India with its recent advancement in space technology, remote sensing has a vital role to play in resolving many such problems. In the light of recent Global Space Programs where several satellites have been launched for large area mapping using microwave sensors, microwave remote sensing can play a vital role as India experiences a large number of disasters every year. Also, majority of Indian population relies on farming for their livelihood. Microwave remote sensing can have significant effects in both these two scenarios as opposed to its conventional counterpart, optical remote sensing under diverse conditions and facilitate better results in terms of disaster management, prediction and increasing crop yield. The current paper brings out the various details on the work done by using active microwave remote sensing, with specific illustrative examples, for disaster management support, crop management techniques and the challenges associated on carrying out such researches in a diverse terrain like India

    Applications of remote sensing in hydrology

    Get PDF
    OWRT Project no. B-160-COLO

    Active microwave users working group program planning

    Get PDF
    A detailed programmatic and technical development plan for active microwave technology was examined in each of four user activities: (1) vegetation; (2) water resources and geologic applications, and (4) oceanographic applications. Major application areas were identified, and the impact of each application area in terms of social and economic gains were evaluated. The present state of knowledge of the applicability of active microwave remote sensing to each application area was summarized and its role relative to other remote sensing devices was examined. The analysis and data acquisition techniques needed to resolve the effects of interference factors were reviewed to establish an operational capability in each application area. Flow charts of accomplished and required activities in each application area that lead to operational capability were structured

    Earth resources: A continuing bibliography with indexes (issue 52)

    Get PDF
    This bibliography lists 454 reports, articles, and other documents introduced into the NASA scientific and technical information system between October 1 and December 31, 1986. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Earth resources: A continuing bibliography (issue 26)

    Get PDF
    This bibliography lists 480 reports, articles, and other documents introduced into the NASA scientific and technical information system between April 1, 1980 and June 30, 1980. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Skylab EREP Investigations Summary

    Get PDF
    The problems in the areas of agriculture, range and forestry; land use and cartography; geology and hydrology; oceans atmosphere, and data analysis techniques were investigated and summarized using Earth Resources Experiment Package (EREP) data
    corecore