114 research outputs found

    Support vector machines to detect physiological patterns for EEG and EMG-based human-computer interaction:a review

    Get PDF
    Support vector machines (SVMs) are widely used classifiers for detecting physiological patterns in human-computer interaction (HCI). Their success is due to their versatility, robustness and large availability of free dedicated toolboxes. Frequently in the literature, insufficient details about the SVM implementation and/or parameters selection are reported, making it impossible to reproduce study analysis and results. In order to perform an optimized classification and report a proper description of the results, it is necessary to have a comprehensive critical overview of the applications of SVM. The aim of this paper is to provide a review of the usage of SVM in the determination of brain and muscle patterns for HCI, by focusing on electroencephalography (EEG) and electromyography (EMG) techniques. In particular, an overview of the basic principles of SVM theory is outlined, together with a description of several relevant literature implementations. Furthermore, details concerning reviewed papers are listed in tables and statistics of SVM use in the literature are presented. Suitability of SVM for HCI is discussed and critical comparisons with other classifiers are reported

    Electroencephalography (EEG)-based brain computer interfaces for rehabilitation

    Get PDF
    Objective: Brain-computer interface (BCI) technologies have been the subject of study for the past decades to help restore functions for people with severe motor disabilities and to improve their quality of life. BCI research can be generally categorized by control signals (invasive/non-invasive) or applications (e.g. neuroprosthetics/brain-actuated wheelchairs), and efforts have been devoted to better understand the characteristics and possible uses of brain signals. The purpose of this research is to explore the feasibility of a non-invasive BCI system with the combination of unique sensorimotor-rhythm (SMR) features. Specifically, a 2D virtual wheelchair control BCI is implemented to extend the application of previously designed 2D cursor control BCI, and the feasibility of the prototype is tested in electroencephalography (EEG) experiments; guidance on enhancing system performance is provided by a simulation incorporating intelligent control approaches under different EEG decoding accuracies; pattern recognition methods are explored to provide optimized classification results; and a hybrid BCI system is built to enhance the usability of the wheelchair BCI system. Methods: In the virtual wheelchair control study, a creative and user friendly control strategy was proposed, and a paradigm was designed in Matlab, providing a virtual environment for control experiments; five subjects performed physical/imagined left/right hand movements or non-control tasks to control the virtual wheelchair to move forward, turn left/right or stop; 2-step classification methods were employed and the performance was evaluated by hit rate and control time. Feature analysis and time-frequency analysis were conducted to examine the spatial, temporal and frequency properties of the utilized SMR features, i.e. event-related desynchronization (ERD) and post-movement event-related synchronization (ERS). The simulation incorporated intelligent control methods, and evaluated navigation and positioning performance with/without obstacles under different EEG decoding accuracies, to better guide optimization. Classification methods were explored considering different feature sets, tuned classifier parameters and the simulation results, and a recommendation was provided to the proposed system. In the steady state visual evoked potential (SSVEP) system for hybrid BCI study, a paradigm was designed, and an electric circuit system was built to provide visual stimulus, involving SSVEP as another type of signal being used to drive the EEG BCI system. Experiments were conducted and classification methods were explored to evaluate the system performance. Results: ERD was observed on both hemispheres during hand\u27s movement or motor imagery; ERS was observed on the contralateral hemisphere after movement or motor imagery stopped; five subjects participated in the continuous 2D virtual wheelchair control study and 4 of them hit the target with 100% hit rate in their best set with motor imagery. The simulation results indicated that the average hit rate with 10 obstacles can get above 95% for pass-door tests and above 70% for positioning tests, with EEG decoding accuracies of 70% for Non-Idle signals and 80% for idle signals. Classification methods showed that with properly tuned parameters, an average of about 70%-80% decoding accuracy for all the classifiers could be reached, which reached the requirements set by the simulation test. Initial test on the SSVEP BCI system exhibited high classification accuracy, which may extend the usability of the wheelchair system to a larger population when finally combined with ERD/ERS BCI system. Conclusion: This research investigated the feasibility of using both ERD and ERS associated with natural hand\u27s motor imagery, aiming to implement practical BCI systems for the end users in the rehabilitation stage. The simulation with intelligent controls provided guides and requirements for EEG decoding accuracies, based on which pattern recognition methods were explored; properly selected features and adjusted parameters enabled the classifiers to exhibit optimal performance, suitable for the proposed system. Finally, to enlarge the population for which the wheelchair BCI system could benefit for, a SSVEP system for hybrid BCI was designed and tested. These systems provide a non-invasive, practical approach for BCI users in controlling assistive devices such as a virtual wheelchair, in terms of ease of use, adequate speed, and sufficient control accuracy

    Electroencephalogram Signal Processing For Hybrid Brain Computer Interface Systems

    Get PDF
    The goal of this research was to evaluate and compare three types of brain computer interface (BCI) systems, P300, steady state visually evoked potentials (SSVEP) and Hybrid as virtual spelling paradigms. Hybrid BCI is an innovative approach to combine the P300 and SSVEP. However, it is challenging to process the resulting hybrid signals to extract both information simultaneously and effectively. The major step executed toward the advancement to modern BCI system was to move the BCI techniques from traditional LED system to electronic LCD monitor. Such a transition allows not only to develop the graphics of interest but also to generate objects flickering at different frequencies. There were pilot experiments performed for designing and tuning the parameters of the spelling paradigms including peak detection for different range of frequencies of SSVEP BCI, placement of objects on LCD monitor, design of the spelling keyboard, and window time for the SSVEP peak detection processing. All the experiments were devised to evaluate the performance in terms of the spelling accuracy, region error, and adjacency error among all of the paradigms: P300, SSVEP and Hybrid. Due to the different nature of P300 and SSVEP, designing a hybrid P300-SSVEP signal processing scheme demands significant amount of research work in this area. Eventually, two critical questions in hybrid BCl are: (1) which signal processing strategy can best measure the user\u27s intent and (2) what a suitable paradigm is to fuse these two techniques in a simple but effective way. In order to answer these questions, this project focused mainly on developing signal processing and classification technique for hybrid BCI. Hybrid BCI was implemented by extracting the specific information from brain signals, selecting optimum features which contain maximum discrimination information about the speller characters of our interest and by efficiently classifying the hybrid signals. The designed spellers were developed with the aim to improve quality of life of patients with disability by utilizing visually controlled BCI paradigms. The paradigms consist of electrodes to record electroencephalogram signal (EEG) during stimulation, a software to analyze the collected data, and a computing device where the subject’s EEG is the input to estimate the spelled character. Signal processing phase included preliminary tasks as preprocessing, feature extraction, and feature selection. Captured EEG data are usually a superposition of the signals of interest with other unwanted signals from muscles, and from non-biological artifacts. The accuracy of each trial and average accuracy for subjects were computed. Overall, the average accuracy of the P300 and SSVEP spelling paradigm was 84% and 68.5 %. P300 spelling paradigms have better accuracy than both the SSVEP and hybrid paradigm. Hybrid paradigm has the average accuracy of 79 %. However, hybrid system is faster in time and more soothing to look than other paradigms. This work is significant because it has great potential for improving the BCI research in design and application of clinically suitable speller paradigm

    On Tackling Fundamental Constraints in Brain-Computer Interface Decoding via Deep Neural Networks

    Get PDF
    A Brain-Computer Interface (BCI) is a system that provides a communication and control medium between human cortical signals and external devices, with the primary aim to assist or to be used by patients who suffer from a neuromuscular disease. Despite significant recent progress in the area of BCI, there are numerous shortcomings associated with decoding Electroencephalography-based BCI signals in real-world environments. These include, but are not limited to, the cumbersome nature of the equipment, complications in collecting large quantities of real-world data, the rigid experimentation protocol and the challenges of accurate signal decoding, especially in making a system work in real-time. Hence, the core purpose of this work is to investigate improving the applicability and usability of BCI systems, whilst preserving signal decoding accuracy. Recent advances in Deep Neural Networks (DNN) provide the possibility for signal processing to automatically learn the best representation of a signal, contributing to improved performance even with a noisy input signal. Subsequently, this thesis focuses on the use of novel DNN-based approaches for tackling some of the key underlying constraints within the area of BCI. For example, recent technological improvements in acquisition hardware have made it possible to eliminate the pre-existing rigid experimentation procedure, albeit resulting in noisier signal capture. However, through the use of a DNN-based model, it is possible to preserve the accuracy of the predictions from the decoded signals. Moreover, this research demonstrates that by leveraging DNN-based image and signal understanding, it is feasible to facilitate real-time BCI applications in a natural environment. Additionally, the capability of DNN to generate realistic synthetic data is shown to be a potential solution in reducing the requirement for costly data collection. Work is also performed in addressing the well-known issues regarding subject bias in BCI models by generating data with reduced subject-specific features. The overall contribution of this thesis is to address the key fundamental limitations of BCI systems. This includes the unyielding traditional experimentation procedure, the mandatory extended calibration stage and sustaining accurate signal decoding in real-time. These limitations lead to a fragile BCI system that is demanding to use and only suited for deployment in a controlled laboratory. Overall contributions of this research aim to improve the robustness of BCI systems and enable new applications for use in the real-world
    • …
    corecore