8,668 research outputs found

    Recovering facial shape using a statistical model of surface normal direction

    Get PDF
    In this paper, we show how a statistical model of facial shape can be embedded within a shape-from-shading algorithm. We describe how facial shape can be captured using a statistical model of variations in surface normal direction. To construct this model, we make use of the azimuthal equidistant projection to map the distribution of surface normals from the polar representation on a unit sphere to Cartesian points on a local tangent plane. The distribution of surface normal directions is captured using the covariance matrix for the projected point positions. The eigenvectors of the covariance matrix define the modes of shape-variation in the fields of transformed surface normals. We show how this model can be trained using surface normal data acquired from range images and how to fit the model to intensity images of faces using constraints on the surface normal direction provided by Lambert's law. We demonstrate that the combination of a global statistical constraint and local irradiance constraint yields an efficient and accurate approach to facial shape recovery and is capable of recovering fine local surface details. We assess the accuracy of the technique on a variety of images with ground truth and real-world images

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    A fully automatic CAD-CTC system based on curvature analysis for standard and low-dose CT data

    Get PDF
    Computed tomography colonography (CTC) is a rapidly evolving noninvasive medical investigation that is viewed by radiologists as a potential screening technique for the detection of colorectal polyps. Due to the technical advances in CT system design, the volume of data required to be processed by radiologists has increased significantly, and as a consequence the manual analysis of this information has become an increasingly time consuming process whose results can be affected by inter- and intrauser variability. The aim of this paper is to detail the implementation of a fully integrated CAD-CTC system that is able to robustly identify the clinically significant polyps in the CT data. The CAD-CTC system described in this paper is a multistage implementation whose main system components are: 1) automatic colon segmentation; 2) candidate surface extraction; 3) feature extraction; and 4) classification. Our CAD-CTC system performs at 100% sensitivity for polyps larger than 10 mm, 92% sensitivity for polyps in the range 5 to 10 mm, and 57.14% sensitivity for polyps smaller than 5 mm with an average of 3.38 false positives per dataset. The developed system has been evaluated on synthetic and real patient CT data acquired with standard and low-dose radiation levels

    Dense 3D Face Correspondence

    Full text link
    We present an algorithm that automatically establishes dense correspondences between a large number of 3D faces. Starting from automatically detected sparse correspondences on the outer boundary of 3D faces, the algorithm triangulates existing correspondences and expands them iteratively by matching points of distinctive surface curvature along the triangle edges. After exhausting keypoint matches, further correspondences are established by generating evenly distributed points within triangles by evolving level set geodesic curves from the centroids of large triangles. A deformable model (K3DM) is constructed from the dense corresponded faces and an algorithm is proposed for morphing the K3DM to fit unseen faces. This algorithm iterates between rigid alignment of an unseen face followed by regularized morphing of the deformable model. We have extensively evaluated the proposed algorithms on synthetic data and real 3D faces from the FRGCv2, Bosphorus, BU3DFE and UND Ear databases using quantitative and qualitative benchmarks. Our algorithm achieved dense correspondences with a mean localisation error of 1.28mm on synthetic faces and detected 1414 anthropometric landmarks on unseen real faces from the FRGCv2 database with 3mm precision. Furthermore, our deformable model fitting algorithm achieved 98.5% face recognition accuracy on the FRGCv2 and 98.6% on Bosphorus database. Our dense model is also able to generalize to unseen datasets.Comment: 24 Pages, 12 Figures, 6 Tables and 3 Algorithm

    Fast Landmark Localization with 3D Component Reconstruction and CNN for Cross-Pose Recognition

    Full text link
    Two approaches are proposed for cross-pose face recognition, one is based on the 3D reconstruction of facial components and the other is based on the deep Convolutional Neural Network (CNN). Unlike most 3D approaches that consider holistic faces, the proposed approach considers 3D facial components. It segments a 2D gallery face into components, reconstructs the 3D surface for each component, and recognizes a probe face by component features. The segmentation is based on the landmarks located by a hierarchical algorithm that combines the Faster R-CNN for face detection and the Reduced Tree Structured Model for landmark localization. The core part of the CNN-based approach is a revised VGG network. We study the performances with different settings on the training set, including the synthesized data from 3D reconstruction, the real-life data from an in-the-wild database, and both types of data combined. We investigate the performances of the network when it is employed as a classifier or designed as a feature extractor. The two recognition approaches and the fast landmark localization are evaluated in extensive experiments, and compared to stateof-the-art methods to demonstrate their efficacy.Comment: 14 pages, 12 figures, 4 table

    Landmarking-based unsupervised clustering of human faces manifesting labio-schisis dysmorphisms

    Get PDF
    Ultrasound scans, Computed Axial Tomography, Magnetic Resonance Imaging are only few examples of medical imaging tools boosting physicians in diagnosing a wide range of pathologies. Anyway, no standard methodology has been dened yet to extensively exploit them and current diagnoses procedures are still carried out mainly relying on physician's experience. Although the human contribution is always fundamental, it is self-evident that an automatic procedure for image analysis would allow a more rapid and eective identication of dysmorphisms. Moving toward this purpose, in this work we address the problem of feature extraction devoted to the detection of specic dis- eases involving facial dysmorphisms. In particular, a bounded Depth Minimum Steiner Trees (D-MST) clustering algorithm is presented for discriminating groups of individu- als relying on the manifestation/absence of the labio-schisis pathology, commonly called cleft lip. The analysis of three-dimensional facial surfaces via Dierential Geometry is adopted to extract landmarks. The extracted geometrical information is furthermore elaborated to feed the unsupervised clustering algorithm and produce the classication. The clustering returns the probability of being aected by the pathology, allowing physi- cians to focus their attention on risky individuals for further analysis

    Facial analysis in video : detection and recognition

    Get PDF
    Biometric authentication systems automatically identify or verify individuals using physiological (e.g., face, fingerprint, hand geometry, retina scan) or behavioral (e.g., speaking pattern, signature, keystroke dynamics) characteristics. Among these biometrics, facial patterns have the major advantage of being the least intrusive. Automatic face recognition systems thus have great potential in a wide spectrum of application areas. Focusing on facial analysis, this dissertation presents a face detection method and numerous feature extraction methods for face recognition. Concerning face detection, a video-based frontal face detection method has been developed using motion analysis and color information to derive field of interests, and distribution-based distance (DBD) and support vector machine (SVM) for classification. When applied to 92 still images (containing 282 faces), this method achieves 98.2% face detection rate with two false detections, a performance comparable to the state-of-the-art face detection methods; when applied to videQ streams, this method detects faces reliably and efficiently. Regarding face recognition, extensive assessments of face recognition performance in twelve color spaces have been performed, and a color feature extraction method defined by color component images across different color spaces is shown to help improve the baseline performance of the Face Recognition Grand Challenge (FRGC) problems. The experimental results show that some color configurations, such as YV in the YUV color space and YJ in the YIQ color space, help improve face recognition performance. Based on these improved results, a novel feature extraction method implementing genetic algorithms (GAs) and the Fisher linear discriminant (FLD) is designed to derive the optimal discriminating features that lead to an effective image representation for face recognition. This method noticeably improves FRGC ver1.0 Experiment 4 baseline recognition rate from 37% to 73%, and significantly elevates FRGC xxxx Experiment 4 baseline verification rate from 12% to 69%. Finally, four two-dimensional (2D) convolution filters are derived for feature extraction, and a 2D+3D face recognition system implementing both 2D and 3D imaging modalities is designed to address the FRGC problems. This method improves FRGC ver2.0 Experiment 3 baseline performance from 54% to 72%

    TECHNIKI ROZPOZNAWANIA TWARZY

    Get PDF
    The problem of face recognition is discussed. The main methods of recognition are considered. The calibrated stereo pair for the face and calculating the depth map by the correlation algorithm are used. As a result, a 3D mask of the face is obtained. Using three anthropomorphic points, then constructed a coordinate system that ensures a possibility of superposition of the tested mask.Omawiany jest problem rozpoznawania twarzy. Rozważane są główne metody rozpoznawania. Użyta zostaje skalibrowana para stereo dla twarzy oraz obliczanie mapy głębokości poprzez algorytm korelacji. W wyniku takiego, uzyskiwana jest maska twarzy w wymiarze 3D. Użycie trzech antropomorficznych punktów, a następnie skonstruowany systemu współrzędnych zapewnia możliwość nakładania się przetestowanej maski
    corecore