686 research outputs found

    Transfer Adversarial Hashing for Hamming Space Retrieval

    Full text link
    Hashing is widely applied to large-scale image retrieval due to the storage and retrieval efficiency. Existing work on deep hashing assumes that the database in the target domain is identically distributed with the training set in the source domain. This paper relaxes this assumption to a transfer retrieval setting, which allows the database and the training set to come from different but relevant domains. However, the transfer retrieval setting will introduce two technical difficulties: first, the hash model trained on the source domain cannot work well on the target domain due to the large distribution gap; second, the domain gap makes it difficult to concentrate the database points to be within a small Hamming ball. As a consequence, transfer retrieval performance within Hamming Radius 2 degrades significantly in existing hashing methods. This paper presents Transfer Adversarial Hashing (TAH), a new hybrid deep architecture that incorporates a pairwise tt-distribution cross-entropy loss to learn concentrated hash codes and an adversarial network to align the data distributions between the source and target domains. TAH can generate compact transfer hash codes for efficient image retrieval on both source and target domains. Comprehensive experiments validate that TAH yields state of the art Hamming space retrieval performance on standard datasets

    A Survey on Learning to Hash

    Full text link
    Nearest neighbor search is a problem of finding the data points from the database such that the distances from them to the query point are the smallest. Learning to hash is one of the major solutions to this problem and has been widely studied recently. In this paper, we present a comprehensive survey of the learning to hash algorithms, categorize them according to the manners of preserving the similarities into: pairwise similarity preserving, multiwise similarity preserving, implicit similarity preserving, as well as quantization, and discuss their relations. We separate quantization from pairwise similarity preserving as the objective function is very different though quantization, as we show, can be derived from preserving the pairwise similarities. In addition, we present the evaluation protocols, and the general performance analysis, and point out that the quantization algorithms perform superiorly in terms of search accuracy, search time cost, and space cost. Finally, we introduce a few emerging topics.Comment: To appear in IEEE Transactions On Pattern Analysis and Machine Intelligence (TPAMI

    SCH-GAN: Semi-supervised Cross-modal Hashing by Generative Adversarial Network

    Full text link
    Cross-modal hashing aims to map heterogeneous multimedia data into a common Hamming space, which can realize fast and flexible retrieval across different modalities. Supervised cross-modal hashing methods have achieved considerable progress by incorporating semantic side information. However, they mainly have two limitations: (1) Heavily rely on large-scale labeled cross-modal training data which are labor intensive and hard to obtain. (2) Ignore the rich information contained in the large amount of unlabeled data across different modalities, especially the margin examples that are easily to be incorrectly retrieved, which can help to model the correlations. To address these problems, in this paper we propose a novel Semi-supervised Cross-Modal Hashing approach by Generative Adversarial Network (SCH-GAN). We aim to take advantage of GAN's ability for modeling data distributions to promote cross-modal hashing learning in an adversarial way. The main contributions can be summarized as follows: (1) We propose a novel generative adversarial network for cross-modal hashing. In our proposed SCH-GAN, the generative model tries to select margin examples of one modality from unlabeled data when giving a query of another modality. While the discriminative model tries to distinguish the selected examples and true positive examples of the query. These two models play a minimax game so that the generative model can promote the hashing performance of discriminative model. (2) We propose a reinforcement learning based algorithm to drive the training of proposed SCH-GAN. The generative model takes the correlation score predicted by discriminative model as a reward, and tries to select the examples close to the margin to promote discriminative model by maximizing the margin between positive and negative data. Experiments on 3 widely-used datasets verify the effectiveness of our proposed approach.Comment: 12 pages, submitted to IEEE Transactions on Cybernetic

    Deep Class-Wise Hashing: Semantics-Preserving Hashing via Class-wise Loss

    Full text link
    Deep supervised hashing has emerged as an influential solution to large-scale semantic image retrieval problems in computer vision. In the light of recent progress, convolutional neural network based hashing methods typically seek pair-wise or triplet labels to conduct the similarity preserving learning. However, complex semantic concepts of visual contents are hard to capture by similar/dissimilar labels, which limits the retrieval performance. Generally, pair-wise or triplet losses not only suffer from expensive training costs but also lack in extracting sufficient semantic information. In this regard, we propose a novel deep supervised hashing model to learn more compact class-level similarity preserving binary codes. Our deep learning based model is motivated by deep metric learning that directly takes semantic labels as supervised information in training and generates corresponding discriminant hashing code. Specifically, a novel cubic constraint loss function based on Gaussian distribution is proposed, which preserves semantic variations while penalizes the overlap part of different classes in the embedding space. To address the discrete optimization problem introduced by binary codes, a two-step optimization strategy is proposed to provide efficient training and avoid the problem of gradient vanishing. Extensive experiments on four large-scale benchmark databases show that our model can achieve the state-of-the-art retrieval performance. Moreover, when training samples are limited, our method surpasses other supervised deep hashing methods with non-negligible margins

    A Survey on Web Multimedia Mining

    Full text link
    Modern developments in digital media technologies has made transmitting and storing large amounts of multi/rich media data (e.g. text, images, music, video and their combination) more feasible and affordable than ever before. However, the state of the art techniques to process, mining and manage those rich media are still in their infancy. Advances developments in multimedia acquisition and storage technology the rapid progress has led to the fast growing incredible amount of data stored in databases. Useful information to users can be revealed if these multimedia files are analyzed. Multimedia mining deals with the extraction of implicit knowledge, multimedia data relationships, or other patterns not explicitly stored in multimedia files. Also in retrieval, indexing and classification of multimedia data with efficient information fusion of the different modalities is essential for the system's overall performance. The purpose of this paper is to provide a systematic overview of multimedia mining. This article is also represents the issues in the application process component for multimedia mining followed by the multimedia mining models.Comment: 13 Pages; The International Journal of Multimedia & Its Applications (IJMA) Vol.3, No.3, August 201

    Rank-Consistency Deep Hashing for Scalable Multi-Label Image Search

    Full text link
    As hashing becomes an increasingly appealing technique for large-scale image retrieval, multi-label hashing is also attracting more attention for the ability to exploit multi-level semantic contents. In this paper, we propose a novel deep hashing method for scalable multi-label image search. Unlike existing approaches with conventional objectives such as contrast and triplet losses, we employ a rank list, rather than pairs or triplets, to provide sufficient global supervision information for all the samples. Specifically, a new rank-consistency objective is applied to align the similarity orders from two spaces, the original space and the hamming space. A powerful loss function is designed to penalize the samples whose semantic similarity and hamming distance are mismatched in two spaces. Besides, a multi-label softmax cross-entropy loss is presented to enhance the discriminative power with a concise formulation of the derivative function. In order to manipulate the neighborhood structure of the samples with different labels, we design a multi-label clustering loss to cluster the hashing vectors of the samples with the same labels by reducing the distances between the samples and their multiple corresponding class centers. The state-of-the-art experimental results achieved on three public multi-label datasets, MIRFLICKR-25K, IAPRTC12 and NUS-WIDE, demonstrate the effectiveness of the proposed method

    Creating Something from Nothing: Unsupervised Knowledge Distillation for Cross-Modal Hashing

    Full text link
    In recent years, cross-modal hashing (CMH) has attracted increasing attentions, mainly because its potential ability of mapping contents from different modalities, especially in vision and language, into the same space, so that it becomes efficient in cross-modal data retrieval. There are two main frameworks for CMH, differing from each other in whether semantic supervision is required. Compared to the unsupervised methods, the supervised methods often enjoy more accurate results, but require much heavier labors in data annotation. In this paper, we propose a novel approach that enables guiding a supervised method using outputs produced by an unsupervised method. Specifically, we make use of teacher-student optimization for propagating knowledge. Experiments are performed on two popular CMH benchmarks, i.e., the MIRFlickr and NUS-WIDE datasets. Our approach outperforms all existing unsupervised methods by a large margin.Comment: This paper has been accepted for CVPR202

    From Text to Sound: A Preliminary Study on Retrieving Sound Effects to Radio Stories

    Full text link
    Sound effects play an essential role in producing high-quality radio stories but require enormous labor cost to add. In this paper, we address the problem of automatically adding sound effects to radio stories with a retrieval-based model. However, directly implementing a tag-based retrieval model leads to high false positives due to the ambiguity of story contents. To solve this problem, we introduce a retrieval-based framework hybridized with a semantic inference model which helps to achieve robust retrieval results. Our model relies on fine-designed features extracted from the context of candidate triggers. We collect two story dubbing datasets through crowdsourcing to analyze the setting of adding sound effects and to train and test our proposed methods. We further discuss the importance of each feature and introduce several heuristic rules for the trade-off between precision and recall. Together with the text-to-speech technology, our results reveal a promising automatic pipeline on producing high-quality radio stories.Comment: In the Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2019

    TinyKG: Memory-Efficient Training Framework for Knowledge Graph Neural Recommender Systems

    Full text link
    There has been an explosion of interest in designing various Knowledge Graph Neural Networks (KGNNs), which achieve state-of-the-art performance and provide great explainability for recommendation. The promising performance is mainly resulting from their capability of capturing high-order proximity messages over the knowledge graphs. However, training KGNNs at scale is challenging due to the high memory usage. In the forward pass, the automatic differentiation engines (\textsl{e.g.}, TensorFlow/PyTorch) generally need to cache all intermediate activation maps in order to compute gradients in the backward pass, which leads to a large GPU memory footprint. Existing work solves this problem by utilizing multi-GPU distributed frameworks. Nonetheless, this poses a practical challenge when seeking to deploy KGNNs in memory-constrained environments, especially for industry-scale graphs. Here we present TinyKG, a memory-efficient GPU-based training framework for KGNNs for the tasks of recommendation. Specifically, TinyKG uses exact activations in the forward pass while storing a quantized version of activations in the GPU buffers. During the backward pass, these low-precision activations are dequantized back to full-precision tensors, in order to compute gradients. To reduce the quantization errors, TinyKG applies a simple yet effective quantization algorithm to compress the activations, which ensures unbiasedness with low variance. As such, the training memory footprint of KGNNs is largely reduced with negligible accuracy loss. To evaluate the performance of our TinyKG, we conduct comprehensive experiments on real-world datasets. We found that our TinyKG with INT2 quantization aggressively reduces the memory footprint of activation maps with 7×7 \times, only with 2%2\% loss in accuracy, allowing us to deploy KGNNs on memory-constrained devices

    Simultaneous Region Localization and Hash Coding for Fine-grained Image Retrieval

    Full text link
    Fine-grained image hashing is a challenging problem due to the difficulties of discriminative region localization and hash code generation. Most existing deep hashing approaches solve the two tasks independently. While these two tasks are correlated and can reinforce each other. In this paper, we propose a deep fine-grained hashing to simultaneously localize the discriminative regions and generate the efficient binary codes. The proposed approach consists of a region localization module and a hash coding module. The region localization module aims to provide informative regions to the hash coding module. The hash coding module aims to generate effective binary codes and give feedback for learning better localizer. Moreover, to better capture subtle differences, multi-scale regions at different layers are learned without the need of bounding-box/part annotations. Extensive experiments are conducted on two public benchmark fine-grained datasets. The results demonstrate significant improvements in the performance of our method relative to other fine-grained hashing algorithms
    • …
    corecore