5,170 research outputs found

    Gait Recognition from Motion Capture Data

    Full text link
    Gait recognition from motion capture data, as a pattern classification discipline, can be improved by the use of machine learning. This paper contributes to the state-of-the-art with a statistical approach for extracting robust gait features directly from raw data by a modification of Linear Discriminant Analysis with Maximum Margin Criterion. Experiments on the CMU MoCap database show that the suggested method outperforms thirteen relevant methods based on geometric features and a method to learn the features by a combination of Principal Component Analysis and Linear Discriminant Analysis. The methods are evaluated in terms of the distribution of biometric templates in respective feature spaces expressed in a number of class separability coefficients and classification metrics. Results also indicate a high portability of learned features, that means, we can learn what aspects of walk people generally differ in and extract those as general gait features. Recognizing people without needing group-specific features is convenient as particular people might not always provide annotated learning data. As a contribution to reproducible research, our evaluation framework and database have been made publicly available. This research makes motion capture technology directly applicable for human recognition.Comment: Preprint. Full paper accepted at the ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), special issue on Representation, Analysis and Recognition of 3D Humans. 18 pages. arXiv admin note: substantial text overlap with arXiv:1701.00995, arXiv:1609.04392, arXiv:1609.0693

    Quadratic Projection Based Feature Extraction with Its Application to Biometric Recognition

    Full text link
    This paper presents a novel quadratic projection based feature extraction framework, where a set of quadratic matrices is learned to distinguish each class from all other classes. We formulate quadratic matrix learning (QML) as a standard semidefinite programming (SDP) problem. However, the con- ventional interior-point SDP solvers do not scale well to the problem of QML for high-dimensional data. To solve the scalability of QML, we develop an efficient algorithm, termed DualQML, based on the Lagrange duality theory, to extract nonlinear features. To evaluate the feasibility and effectiveness of the proposed framework, we conduct extensive experiments on biometric recognition. Experimental results on three representative biometric recogni- tion tasks, including face, palmprint, and ear recognition, demonstrate the superiority of the DualQML-based feature extraction algorithm compared to the current state-of-the-art algorithm

    A multiple maximum scatter difference discriminant criterion for facial feature extraction

    Get PDF
    2007-2008 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Matching Image Sets via Adaptive Multi Convex Hull

    Get PDF
    Traditional nearest points methods use all the samples in an image set to construct a single convex or affine hull model for classification. However, strong artificial features and noisy data may be generated from combinations of training samples when significant intra-class variations and/or noise occur in the image set. Existing multi-model approaches extract local models by clustering each image set individually only once, with fixed clusters used for matching with various image sets. This may not be optimal for discrimination, as undesirable environmental conditions (eg. illumination and pose variations) may result in the two closest clusters representing different characteristics of an object (eg. frontal face being compared to non-frontal face). To address the above problem, we propose a novel approach to enhance nearest points based methods by integrating affine/convex hull classification with an adapted multi-model approach. We first extract multiple local convex hulls from a query image set via maximum margin clustering to diminish the artificial variations and constrain the noise in local convex hulls. We then propose adaptive reference clustering (ARC) to constrain the clustering of each gallery image set by forcing the clusters to have resemblance to the clusters in the query image set. By applying ARC, noisy clusters in the query set can be discarded. Experiments on Honda, MoBo and ETH-80 datasets show that the proposed method outperforms single model approaches and other recent techniques, such as Sparse Approximated Nearest Points, Mutual Subspace Method and Manifold Discriminant Analysis.Comment: IEEE Winter Conference on Applications of Computer Vision (WACV), 201

    Multiple Data-Dependent Kernel Fisher Discriminant Analysis for Face Recognition

    Get PDF
    Kernel Fisher discriminant analysis (KFDA) method has demonstrated its success in extracting facial features for face recognition. Compared to linear techniques, it can better describe the complex and nonlinear variations of face images. However, a single kernel is not always suitable for the applications of face recognition which contain data from multiple, heterogeneous sources, such as face images under huge variations of pose, illumination, and facial expression. To improve the performance of KFDA in face recognition, a novel algorithm named multiple data-dependent kernel Fisher discriminant analysis (MDKFDA) is proposed in this paper. The constructed multiple data-dependent kernel (MDK) is a combination of several base kernels with a data-dependent kernel constraint on their weights. By solving the optimization equation based on Fisher criterion and maximizing the margin criterion, the parameter optimization of data-dependent kernel and multiple base kernels is achieved. Experimental results on the three face databases validate the effectiveness of the proposed algorithm
    corecore