2,700 research outputs found

    A Semi-supervised Spatial Spectral Regularized Manifold Local Scaling Cut With HGF for Dimensionality Reduction of Hyperspectral Images

    Full text link
    Hyperspectral images (HSI) contain a wealth of information over hundreds of contiguous spectral bands, making it possible to classify materials through subtle spectral discrepancies. However, the classification of this rich spectral information is accompanied by the challenges like high dimensionality, singularity, limited training samples, lack of labeled data samples, heteroscedasticity and nonlinearity. To address these challenges, we propose a semi-supervised graph based dimensionality reduction method named `semi-supervised spatial spectral regularized manifold local scaling cut' (S3RMLSC). The underlying idea of the proposed method is to exploit the limited labeled information from both the spectral and spatial domains along with the abundant unlabeled samples to facilitate the classification task by retaining the original distribution of the data. In S3RMLSC, a hierarchical guided filter (HGF) is initially used to smoothen the pixels of the HSI data to preserve the spatial pixel consistency. This step is followed by the construction of linear patches from the nonlinear manifold by using the maximal linear patch (MLP) criterion. Then the inter-patch and intra-patch dissimilarity matrices are constructed in both spectral and spatial domains by regularized manifold local scaling cut (RMLSC) and neighboring pixel manifold local scaling cut (NPMLSC) respectively. Finally, we obtain the projection matrix by optimizing the updated semi-supervised spatial-spectral between-patch and total-patch dissimilarity. The effectiveness of the proposed DR algorithm is illustrated with publicly available real-world HSI datasets

    LGLG-WPCA: An Effective Texture-based Method for Face Recognition

    Full text link
    In this paper, we proposed an effective face feature extraction method by Learning Gabor Log-Euclidean Gaussian with Whitening Principal Component Analysis (WPCA), called LGLG-WPCA. The proposed method learns face features from the embedded multivariate Gaussian in Gabor wavelet domain; it has the robust performance to adverse conditions such as varying poses, skin aging and uneven illumination. Because the space of Gaussian is a Riemannian manifold and it is difficult to incorporate learning mechanism in the model. To address this issue, we use L2EMG to map the multidimensional Gaussian model to the linear space, and then use WPCA to learn face features. We also implemented the key-point-based version of LGLG-WPCA, called LGLG(KP)-WPCA. Experiments show the proposed methods are effective and promising for face texture feature extraction and the combination of the feature of the proposed methods and the features of Deep Convolutional Network (DCNN) achieved the best recognition accuracies on FERET database compared to the state-of-the-art methods. In the next version of this paper, we will test the performance of the proposed methods on the large-varying pose databases

    Metastatic liver tumour segmentation from discriminant Grassmannian manifolds

    Full text link
    The early detection, diagnosis and monitoring of liver cancer progression can be achieved with the precise delineation of metastatic tumours. However, accurate automated segmentation remains challenging due to the presence of noise, inhomogeneity and the high appearance variability of malignant tissue. In this paper, we propose an unsupervised metastatic liver tumour segmentation framework using a machine learning approach based on discriminant Grassmannian manifolds which learns the appearance of tumours with respect to normal tissue. First, the framework learns within-class and between-class similarity distributions from a training set of images to discover the optimal manifold discrimination between normal and pathological tissue in the liver. Second, a conditional optimisation scheme computes nonlocal pairwise as well as pattern-based clique potentials from the manifold subspace to recognise regions with similar labelings and to incorporate global consistency in the segmentation process. The proposed framework was validated on a clinical database of 43 CT images from patients with metastatic liver cancer. Compared to state-of-the-art methods, our method achieves a better performance on two separate datasets of metastatic liver tumours from different clinical sites, yielding an overall mean Dice similarity coefficient of 90.7 +/- 2.4 in over 50 tumours with an average volume of 27.3 mm3

    SuperPCA: A Superpixelwise PCA Approach for Unsupervised Feature Extraction of Hyperspectral Imagery

    Full text link
    As an unsupervised dimensionality reduction method, principal component analysis (PCA) has been widely considered as an efficient and effective preprocessing step for hyperspectral image (HSI) processing and analysis tasks. It takes each band as a whole and globally extracts the most representative bands. However, different homogeneous regions correspond to different objects, whose spectral features are diverse. It is obviously inappropriate to carry out dimensionality reduction through a unified projection for an entire HSI. In this paper, a simple but very effective superpixelwise PCA approach, called SuperPCA, is proposed to learn the intrinsic low-dimensional features of HSIs. In contrast to classical PCA models, SuperPCA has four main properties. (1) Unlike the traditional PCA method based on a whole image, SuperPCA takes into account the diversity in different homogeneous regions, that is, different regions should have different projections. (2) Most of the conventional feature extraction models cannot directly use the spatial information of HSIs, while SuperPCA is able to incorporate the spatial context information into the unsupervised dimensionality reduction by superpixel segmentation. (3) Since the regions obtained by superpixel segmentation have homogeneity, SuperPCA can extract potential low-dimensional features even under noise. (4) Although SuperPCA is an unsupervised method, it can achieve competitive performance when compared with supervised approaches. The resulting features are discriminative, compact, and noise resistant, leading to improved HSI classification performance. Experiments on three public datasets demonstrate that the SuperPCA model significantly outperforms the conventional PCA based dimensionality reduction baselines for HSI classification. The Matlab source code is available at https://github.com/junjun-jiang/SuperPCAComment: 13 pages, 10 figures, Accepted by IEEE TGR

    A Survey on Ear Biometrics

    No full text
    Recognizing people by their ear has recently received significant attention in the literature. Several reasons account for this trend: first, ear recognition does not suffer from some problems associated with other non contact biometrics, such as face recognition; second, it is the most promising candidate for combination with the face in the context of multi-pose face recognition; and third, the ear can be used for human recognition in surveillance videos where the face may be occluded completely or in part. Further, the ear appears to degrade little with age. Even though, current ear detection and recognition systems have reached a certain level of maturity, their success is limited to controlled indoor conditions. In addition to variation in illumination, other open research problems include hair occlusion; earprint forensics; ear symmetry; ear classification; and ear individuality. This paper provides a detailed survey of research conducted in ear detection and recognition. It provides an up-to-date review of the existing literature revealing the current state-of-art for not only those who are working in this area but also for those who might exploit this new approach. Furthermore, it offers insights into some unsolved ear recognition problems as well as ear databases available for researchers

    Human Emotional Facial Expression Recognition

    Full text link
    An automatic Facial Expression Recognition (FER) model with Adaboost face detector, feature selection based on manifold learning and synergetic prototype based classifier has been proposed. Improved feature selection method and proposed classifier can achieve favorable effectiveness to performance FER in reasonable processing time

    Face Recognition: From Traditional to Deep Learning Methods

    Full text link
    Starting in the seventies, face recognition has become one of the most researched topics in computer vision and biometrics. Traditional methods based on hand-crafted features and traditional machine learning techniques have recently been superseded by deep neural networks trained with very large datasets. In this paper we provide a comprehensive and up-to-date literature review of popular face recognition methods including both traditional (geometry-based, holistic, feature-based and hybrid methods) and deep learning methods

    Fuzziness-based Spatial-Spectral Class Discriminant Information Preserving Active Learning for Hyperspectral Image Classification

    Full text link
    Traditional Active/Self/Interactive Learning for Hyperspectral Image Classification (HSIC) increases the size of the training set without considering the class scatters and randomness among the existing and new samples. Second, very limited research has been carried out on joint spectral-spatial information and finally, a minor but still worth mentioning is the stopping criteria which not being much considered by the community. Therefore, this work proposes a novel fuzziness-based spatial-spectral within and between for both local and global class discriminant information preserving (FLG) method. We first investigate a spatial prior fuzziness-based misclassified sample information. We then compute the total local and global for both within and between class information and formulate it in a fine-grained manner. Later this information is fed to a discriminative objective function to query the heterogeneous samples which eliminate the randomness among the training samples. Experimental results on benchmark HSI datasets demonstrate the effectiveness of the FLG method on Generative, Extreme Learning Machine and Sparse Multinomial Logistic Regression (SMLR)-LORSAL classifiers.Comment: 13 pages, 7 figure

    Max-Margin based Discriminative Feature Learning

    Full text link
    In this paper, we propose a new max-margin based discriminative feature learning method. Specifically, we aim at learning a low-dimensional feature representation, so as to maximize the global margin of the data and make the samples from the same class as close as possible. In order to enhance the robustness to noise, a l2,1l_{2,1} norm constraint is introduced to make the transformation matrix in group sparsity. In addition, for multi-class classification tasks, we further intend to learn and leverage the correlation relationships among multiple class tasks for assisting in learning discriminative features. The experimental results demonstrate the power of the proposed method against the related state-of-the-art methods.Comment: Accepted by IEEE TNNL
    corecore