900 research outputs found

    Positive Definite Kernels in Machine Learning

    Full text link
    This survey is an introduction to positive definite kernels and the set of methods they have inspired in the machine learning literature, namely kernel methods. We first discuss some properties of positive definite kernels as well as reproducing kernel Hibert spaces, the natural extension of the set of functions {k(x,),xX}\{k(x,\cdot),x\in\mathcal{X}\} associated with a kernel kk defined on a space X\mathcal{X}. We discuss at length the construction of kernel functions that take advantage of well-known statistical models. We provide an overview of numerous data-analysis methods which take advantage of reproducing kernel Hilbert spaces and discuss the idea of combining several kernels to improve the performance on certain tasks. We also provide a short cookbook of different kernels which are particularly useful for certain data-types such as images, graphs or speech segments.Comment: draft. corrected a typo in figure

    Manifold Based Deep Learning: Advances and Machine Learning Applications

    Get PDF
    Manifolds are topological spaces that are locally Euclidean and find applications in dimensionality reduction, subspace learning, visual domain adaptation, clustering, and more. In this dissertation, we propose a framework for linear dimensionality reduction called the proxy matrix optimization (PMO) that uses the Grassmann manifold for optimizing over orthogonal matrix manifolds. PMO is an iterative and flexible method that finds the lower-dimensional projections for various linear dimensionality reduction methods by changing the objective function. PMO is suitable for Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Canonical Correlation Analysis (CCA), Maximum Autocorrelation Factors (MAF), and Locality Preserving Projections (LPP). We extend PMO to incorporate robust Lp-norm versions of PCA and LDA, which uses fractional p-norms making them more robust to noisy data and outliers. The PMO method is designed to be realized as a layer in a neural network for maximum benefit. In order to do so, the incremental versions of PCA, LDA, and LPP are included in the PMO framework for problems where the data is not all available at once. Next, we explore the topic of domain shift in visual domain adaptation by combining concepts from spherical manifolds and deep learning. We investigate domain shift, which quantifies how well a model trained on a source domain adapts to a similar target domain with a metric called Spherical Optimal Transport (SpOT). We adopt the spherical manifold along with an orthogonal projection loss to obtain the features from the source and target domains. We then use the optimal transport with the cosine distance between the features as a way to measure the gap between the domains. We show, in our experiments with domain adaptation datasets, that SpOT does better than existing measures for quantifying domain shift and demonstrates a better correlation with the gain of transfer across domains

    Representation Learning: A Review and New Perspectives

    Full text link
    The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can be used to help design representations, learning with generic priors can also be used, and the quest for AI is motivating the design of more powerful representation-learning algorithms implementing such priors. This paper reviews recent work in the area of unsupervised feature learning and deep learning, covering advances in probabilistic models, auto-encoders, manifold learning, and deep networks. This motivates longer-term unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation and manifold learning

    Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part 2 Applications and Future Perspectives

    Full text link
    Part 2 of this monograph builds on the introduction to tensor networks and their operations presented in Part 1. It focuses on tensor network models for super-compressed higher-order representation of data/parameters and related cost functions, while providing an outline of their applications in machine learning and data analytics. A particular emphasis is on the tensor train (TT) and Hierarchical Tucker (HT) decompositions, and their physically meaningful interpretations which reflect the scalability of the tensor network approach. Through a graphical approach, we also elucidate how, by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volumes of data/parameters, thereby alleviating or even eliminating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification (support tensor machines, canonical correlation analysis, higher order partial least squares), generalized eigenvalue decomposition, Riemannian optimization, and in the optimization of deep neural networks. Part 1 and Part 2 of this work can be used either as stand-alone separate texts, or indeed as a conjoint comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions.Comment: 232 page

    Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part 2 Applications and Future Perspectives

    Full text link
    Part 2 of this monograph builds on the introduction to tensor networks and their operations presented in Part 1. It focuses on tensor network models for super-compressed higher-order representation of data/parameters and related cost functions, while providing an outline of their applications in machine learning and data analytics. A particular emphasis is on the tensor train (TT) and Hierarchical Tucker (HT) decompositions, and their physically meaningful interpretations which reflect the scalability of the tensor network approach. Through a graphical approach, we also elucidate how, by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volumes of data/parameters, thereby alleviating or even eliminating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification (support tensor machines, canonical correlation analysis, higher order partial least squares), generalized eigenvalue decomposition, Riemannian optimization, and in the optimization of deep neural networks. Part 1 and Part 2 of this work can be used either as stand-alone separate texts, or indeed as a conjoint comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions.Comment: 232 page

    Robust signatures for 3D face registration and recognition

    Get PDF
    PhDBiometric authentication through face recognition has been an active area of research for the last few decades, motivated by its application-driven demand. The popularity of face recognition, compared to other biometric methods, is largely due to its minimum requirement of subject co-operation, relative ease of data capture and similarity to the natural way humans distinguish each other. 3D face recognition has recently received particular interest since three-dimensional face scans eliminate or reduce important limitations of 2D face images, such as illumination changes and pose variations. In fact, three-dimensional face scans are usually captured by scanners through the use of a constant structured-light source, making them invariant to environmental changes in illumination. Moreover, a single 3D scan also captures the entire face structure and allows for accurate pose normalisation. However, one of the biggest challenges that still remain in three-dimensional face scans is the sensitivity to large local deformations due to, for example, facial expressions. Due to the nature of the data, deformations bring about large changes in the 3D geometry of the scan. In addition to this, 3D scans are also characterised by noise and artefacts such as spikes and holes, which are uncommon with 2D images and requires a pre-processing stage that is speci c to the scanner used to capture the data. The aim of this thesis is to devise a face signature that is compact in size and overcomes the above mentioned limitations. We investigate the use of facial regions and landmarks towards a robust and compact face signature, and we study, implement and validate a region-based and a landmark-based face signature. Combinations of regions and landmarks are evaluated for their robustness to pose and expressions, while the matching scheme is evaluated for its robustness to noise and data artefacts

    Inner geometry of complex surfaces: a valuative approach

    Full text link
    Given a complex analytic germ (X,0)(X, 0) in (Cn,0)(\mathbb C^n, 0), the standard Hermitian metric of Cn\mathbb C^n induces a natural arc-length metric on (X,0)(X, 0), called the inner metric. We study the inner metric structure of the germ of an isolated complex surface singularity (X,0)(X,0) by means of an infinite family of numerical analytic invariants, called inner rates. Our main result is a formula for the Laplacian of the inner rate function on a space of valuations, the non-archimedean link of (X,0)(X,0). We deduce in particular that the global data consisting of the topology of (X,0)(X,0), together with the configuration of a generic hyperplane section and of the polar curve of a generic plane projection of (X,0)(X,0), completely determine all the inner rates on (X,0)(X,0), and hence the local metric structure of the germ. Several other applications of our formula are discussed in the paper.Comment: Proposition 5.3 strengthened, exposition improved, some typos corrected, references updated. 42 pages and 10 figures. To appear in Geometry & Topolog
    corecore