63,418 research outputs found

    A discretization method based on maximizing the area under receiver operating characteristic curve

    Get PDF
    Cataloged from PDF version of article.Many machine learning algorithms require the features to be categorical. Hence, they require all numeric-valued data to be discretized into intervals. In this paper, we present a new discretization method based on the receiver operating characteristics (ROC) Curve (AUC) measure. Maximum area under ROC curve-based discretization (MAD) is a global, static and supervised discretization method. MAD uses the sorted order of the continuous values of a feature and discretizes the feature in such a way that the AUC based on that feature is to be maximized. The proposed method is compared with alternative discretization methods such as ChiMerge, Entropy-Minimum Description Length Principle (MDLP), Fixed Frequency Discretization (FFD), and Proportional Discretization (PD). FFD and PD have been recently proposed and are designed for Naive Bayes learning. ChiMerge is a merging discretization method as the MAD method. Evaluations are performed in terms of M-Measure, an AUC-based metric for multi-class classification, and accuracy values obtained from Naive Bayes and Aggregating One-Dependence Estimators (AODE) algorithms by using real-world datasets. Empirical results show that MAD is a strong candidate to be a good alternative to other discretization methods

    Discretized Fast–Slow Systems with Canards in Two Dimensions

    Get PDF
    We study the problem of preservation of maximal canards for time discretized fast–slow systems with canard fold points. In order to ensure such preservation, certain favorable structure-preserving properties of the discretization scheme are required. Conventional schemes do not possess such properties. We perform a detailed analysis for an unconventional discretization scheme due to Kahan. The analysis uses the blow-up method to deal with the loss of normal hyperbolicity at the canard point. We show that the structure-preserving properties of the Kahan discretization for quadratic vector fields imply a similar result as in continuous time, guaranteeing the occurrence of maximal canards between attracting and repelling slow manifolds upon variation of a bifurcation parameter. The proof is based on a Melnikov computation along an invariant separating curve, which organizes the dynamics of the map similarly to the ODE problem

    Fast B-Spline 2D Curve Fitting for unorganized Noisy Datasets

    Get PDF
    In the context of coordinate metrology and reverse engineering, freeform curve reconstruction from unorganized data points still offers ways for improvement. Geometric convection is the process of fitting a closed shape, generally represented in the form of a periodic B-Spline model, to data points [WPL06]. This process should be robust to freeform shapes and convergence should be assured even in the presence of noise. The convection's starting point is a periodic B-Spline polygon defined by a finite number of control points that are distributed around the data points. The minimization of the sum of the squared distances separating the B-Spline curve and the points is done and translates into an adaptation of the shape of the curve, meaning that the control points are either inserted, removed or delocalized automatically depending on the accuracy of the fit. Computing distances is a computationally expensive step in which finding the projection of each of the data points requires the determination of location parameters along the curve. Zheng et al [ZBLW12] propose a minimization process in which location parameters and control points are calculated simultaneously. We propose a method in which we do not need to estimate location parameters, but rather compute topological distances that can be assimilated to the Hausdorff distances using a two-step association procedure. Instead of using the continuous representation of the B-Spline curve and having to solve for footpoints, we set the problem in discrete form by applying subdivision of the control polygon. This generates a discretization of the curve and establishes the link between the discrete point-to-curve distances and the position of the control points. The first step of the association process associates BSpline discrete points to data points and a segmentation of the cloud of points is done. The second step uses this segmentation to associate to each data point the nearest discrete BSpline segment. Results are presented for the fitting of turbine blades profiles and a thorough comparison between our approach and the existing methods is given [ZBLW12, WPL06, SKH98]

    Constructing solutions to the Bj\"orling problem for isothermic surfaces by structure preserving discretization

    Get PDF
    In this article, we study an analog of the Bj\"orling problem for isothermic surfaces (that are more general than minimal surfaces): given a real analytic curve Îł\gamma in R3{\mathbb R}^3, and two analytic non-vanishing orthogonal vector fields vv and ww along Îł\gamma, find an isothermic surface that is tangent to Îł\gamma and that has vv and ww as principal directions of curvature. We prove that solutions to that problem can be obtained by constructing a family of discrete isothermic surfaces (in the sense of Bobenko and Pinkall) from data that is sampled along Îł\gamma, and passing to the limit of vanishing mesh size. The proof relies on a rephrasing of the Gauss-Codazzi-system as analytic Cauchy problem and an in-depth-analysis of its discretization which is induced from the geometry of discrete isothermic surfaces. The discrete-to-continuous limit is carried out for the Christoffel and the Darboux transformations as well.Comment: 29 pages, some figure

    Coxeter's frieze patterns and discretization of the Virasoro orbit

    Full text link
    We show that the space of classical Coxeter's frieze patterns can be viewed as a discrete version of a coadjoint orbit of the Virasoro algebra. The canonical (cluster) (pre)symplectic form on the space of frieze patterns is a discretization of the Kirillov symplectic form. We relate a continuous version of frieze patterns to conformal metrics of constant curvature in dimension 2.Comment: typos correcte

    Structure-Preserving Discretization of Incompressible Fluids

    Get PDF
    The geometric nature of Euler fluids has been clearly identified and extensively studied over the years, culminating with Lagrangian and Hamiltonian descriptions of fluid dynamics where the configuration space is defined as the volume-preserving diffeomorphisms, and Kelvin's circulation theorem is viewed as a consequence of Noether's theorem associated with the particle relabeling symmetry of fluid mechanics. However computational approaches to fluid mechanics have been largely derived from a numerical-analytic point of view, and are rarely designed with structure preservation in mind, and often suffer from spurious numerical artifacts such as energy and circulation drift. In contrast, this paper geometrically derives discrete equations of motion for fluid dynamics from first principles in a purely Eulerian form. Our approach approximates the group of volume-preserving diffeomorphisms using a finite dimensional Lie group, and associated discrete Euler equations are derived from a variational principle with non-holonomic constraints. The resulting discrete equations of motion yield a structure-preserving time integrator with good long-term energy behavior and for which an exact discrete Kelvin's circulation theorem holds

    Analyzing the wave number dependency of the convergence rate of a multigrid preconditioned Krylov method for the Helmholtz equation with an absorbing layer

    Full text link
    This paper analyzes the Krylov convergence rate of a Helmholtz problem preconditioned with Multigrid. The multigrid method is applied to the Helmholtz problem formulated on a complex contour and uses GMRES as a smoother substitute at each level. A one-dimensional model is analyzed both in a continuous and discrete way. It is shown that the Krylov convergence rate of the continuous problem is independent of the wave number. The discrete problem, however, can deviate significantly from this bound due to a pitchfork in the spectrum. It is further shown in numerical experiments that the convergence rate of the Krylov method approaches the continuous bound as the grid distance hh gets small

    Importance and effectiveness of representing the shapes of Cosserat rods and framed curves as paths in the special Euclidean algebra

    Get PDF
    We discuss how the shape of a special Cosserat rod can be represented as a path in the special Euclidean algebra. By shape we mean all those geometric features that are invariant under isometries of the three-dimensional ambient space. The representation of the shape as a path in the special Euclidean algebra is intrinsic to the description of the mechanical properties of a rod, since it is given directly in terms of the strain fields that stimulate the elastic response of special Cosserat rods. Moreover, such a representation leads naturally to discretization schemes that avoid the need for the expensive reconstruction of the strains from the discretized placement and for interpolation procedures which introduce some arbitrariness in popular numerical schemes. Given the shape of a rod and the positioning of one of its cross sections, the full placement in the ambient space can be uniquely reconstructed and described by means of a base curve endowed with a material frame. By viewing a geometric curve as a rod with degenerate point-like cross sections, we highlight the essential difference between rods and framed curves, and clarify why the family of relatively parallel adapted frames is not suitable for describing the mechanics of rods but is the appropriate tool for dealing with the geometry of curves.Comment: Revised version; 25 pages; 7 figure

    Geometric discrete analogues of tangent bundles and constrained Lagrangian systems

    Full text link
    Discretizing variational principles, as opposed to discretizing differential equations, leads to discrete-time analogues of mechanics, and, systematically, to geometric numerical integrators. The phase space of such variational discretizations is often the set of configuration pairs, analogously corresponding to initial and terminal points of a tangent vectors. We develop alternative discrete analogues of tangent bundles, by extending tangent vectors to finite curve segments, one curve segment for each tangent vector. Towards flexible, high order numerical integrators, we use these discrete tangent bundles as phase spaces for discretizations of the variational principles of Lagrangian systems, up to the generality of nonholonomic mechanical systems with nonlinear constraints. We obtain a self-contained and transparent development, where regularity, equations of motion, symmetry and momentum, and structure preservation, all have natural expressions.Comment: Typos corrected. New abstract. Diagrams added. Some additional information and a conclusions section adde
    • …
    corecore