1,005 research outputs found

    An HMM--ELLAM scheme on generic polygonal meshes for miscible incompressible flows in porous media

    Full text link
    We design a numerical approximation of a system of partial differential equations modelling the miscible displacement of a fluid by another in a porous medium. The advective part of the system is discretised using a characteristic method, and the diffusive parts by a finite volume method. The scheme is applicable on generic (possibly non-conforming) meshes as encountered in applications. The main features of our work are the reconstruction of a Darcy velocity, from the discrete pressure fluxes, that enjoys a local consistency property, an analysis of implementation issues faced when tracking, via the characteristic method, distorted cells, and a new treatment of cells near the injection well that accounts better for the conservativity of the injected fluid

    A hybrid numerical flux for supersonic flows with application to rocket nozzles

    Get PDF
    The numerical simulation of shock waves in supersonic flows is challenging because of several instabilities which can affect the solution. Among them, the carbuncle phenomenon can introduce nonphysical perturbations in captured shock waves. In the present work, a hybrid numerical flux is proposed for the evaluation of the convective fluxes that avoids carbuncle and keeps high-accuracy on shocks and boundary layers. In particular, the proposed flux is a combination between an upwind approximate Riemann problem solver and the Local Lax-Friedrichs scheme. A simple strategy to mix the two fluxes is proposed and tested in the framework of a discontinuous Galerkin discretisation. The approach is investigated on the subsonic flow in a channel, on the supersonic flow around a cylinder, on the supersonic flow on a flat plate and on the flow in a overexpanded rocket nozzle

    CFD simulation using FLUENT and RANS3D - A validation exercise

    Get PDF
    The present work involves two-dimensional numerical simulation of three benchmark problems like (i) Laminar flow in a lid driven cavity (ii) Turbulent flow past a backward facing step and (iii) turbulent flow past NACA0012 aerofoil, using in-house flow solution code RANS3D and the commercially available FLUENT code. The results obtained using these codes are compared with the available measurement data and/or other computations
    corecore