342 research outputs found

    Controller Synthesis for Discrete-Time Polynomial Systems via Occupation Measures

    Full text link
    In this paper, we design nonlinear state feedback controllers for discrete-time polynomial dynamical systems via the occupation measure approach. We propose the discrete-time controlled Liouville equation, and use it to formulate the controller synthesis problem as an infinite-dimensional linear programming problem on measures, which is then relaxed as finite-dimensional semidefinite programming problems on moments of measures and their duals on sums-of-squares polynomials. Nonlinear controllers can be extracted from the solutions to the relaxed problems. The advantage of the occupation measure approach is that we solve convex problems instead of generally non-convex problems, and the computational complexity is polynomial in the state and input dimensions, and hence the approach is more scalable. In addition, we show that the approach can be applied to over-approximating the backward reachable set of discrete-time autonomous polynomial systems and the controllable set of discrete-time polynomial systems under known state feedback control laws. We illustrate our approach on several dynamical systems

    Convex computation of the region of attraction of polynomial control systems

    Get PDF
    We address the long-standing problem of computing the region of attraction (ROA) of a target set (e.g., a neighborhood of an equilibrium point) of a controlled nonlinear system with polynomial dynamics and semialgebraic state and input constraints. We show that the ROA can be computed by solving an infinite-dimensional convex linear programming (LP) problem over the space of measures. In turn, this problem can be solved approximately via a classical converging hierarchy of convex finite-dimensional linear matrix inequalities (LMIs). Our approach is genuinely primal in the sense that convexity of the problem of computing the ROA is an outcome of optimizing directly over system trajectories. The dual infinite-dimensional LP on nonnegative continuous functions (approximated by polynomial sum-of-squares) allows us to generate a hierarchy of semialgebraic outer approximations of the ROA at the price of solving a sequence of LMI problems with asymptotically vanishing conservatism. This sharply contrasts with the existing literature which follows an exclusively dual Lyapunov approach yielding either nonconvex bilinear matrix inequalities or conservative LMI conditions. The approach is simple and readily applicable as the outer approximations are the outcome of a single semidefinite program with no additional data required besides the problem description

    Measures and LMI for impulsive optimal control with applications to space rendezvous problems

    Full text link
    This paper shows how to find lower bounds on, and sometimes solve globally, a large class of nonlinear optimal control problems with impulsive controls using semi-definite programming (SDP). This is done by relaxing an optimal control problem into a measure differential problem. The manipulation of the measures by their moments reduces the problem to a convergent series of standard linear matrix inequality (LMI) relaxations. After providing numerous academic examples, we apply the method to the impulsive rendezvous of two orbiting spacecrafts. As the method provides lower bounds on the global infimum, global optimality of the solutions can be guaranteed numerically by a posteriori simulations, and we can recover simultaneously the optimal impulse time and amplitudes by simple linear algebra

    Domain Decomposition for Stochastic Optimal Control

    Full text link
    This work proposes a method for solving linear stochastic optimal control (SOC) problems using sum of squares and semidefinite programming. Previous work had used polynomial optimization to approximate the value function, requiring a high polynomial degree to capture local phenomena. To improve the scalability of the method to problems of interest, a domain decomposition scheme is presented. By using local approximations, lower degree polynomials become sufficient, and both local and global properties of the value function are captured. The domain of the problem is split into a non-overlapping partition, with added constraints ensuring C1C^1 continuity. The Alternating Direction Method of Multipliers (ADMM) is used to optimize over each domain in parallel and ensure convergence on the boundaries of the partitions. This results in improved conditioning of the problem and allows for much larger and more complex problems to be addressed with improved performance.Comment: 8 pages. Accepted to CDC 201

    Linear Hamilton Jacobi Bellman Equations in High Dimensions

    Get PDF
    The Hamilton Jacobi Bellman Equation (HJB) provides the globally optimal solution to large classes of control problems. Unfortunately, this generality comes at a price, the calculation of such solutions is typically intractible for systems with more than moderate state space size due to the curse of dimensionality. This work combines recent results in the structure of the HJB, and its reduction to a linear Partial Differential Equation (PDE), with methods based on low rank tensor representations, known as a separated representations, to address the curse of dimensionality. The result is an algorithm to solve optimal control problems which scales linearly with the number of states in a system, and is applicable to systems that are nonlinear with stochastic forcing in finite-horizon, average cost, and first-exit settings. The method is demonstrated on inverted pendulum, VTOL aircraft, and quadcopter models, with system dimension two, six, and twelve respectively.Comment: 8 pages. Accepted to CDC 201
    • 

    corecore