483 research outputs found

    A New CAC Method Using Queuing Theory

    Get PDF
    The CAC (Connection Admission Control) method plays an important role in the ATM (Asynchronous Transfer Mode) network environment. The CAC is the first step in the prevention of congested states in the network topology, and conducts to the optimal network resources utilization. The paper is aimed to propose an enhancement for a convolution method that is one of the statistical CAC methods used in ATM. The convolution method uses a buffer-less assumption in the estimation of the cell loss. Using formulas for the G/M/1 queuing system, the cell loss can be estimated as the buffer overflow probability. In this paper, the proposed CAC method is compared with other three statistical CAC methods, and conclusions regarding the exploitation of the CAC method are presente

    Statistical multiplexing and connection admission control in ATM networks

    Get PDF
    Asynchronous Transfer Mode (ATM) technology is widely employed for the transport of network traffic, and has the potential to be the base technology for the next generation of global communications. Connection Admission Control (CAC) is the effective traffic control mechanism which is necessary in ATM networks in order to avoid possible congestion at each network node and to achieve the Quality-of-Service (QoS) requested by each connection. CAC determines whether or not the network should accept a new connection. A new connection will only be accepted if the network has sufficient resources to meet its QoS requirements without affecting the QoS commitments already made by the network for existing connections. The design of a high-performance CAC is based on an in-depth understanding of the statistical characteristics of the traffic sources

    Some aspects of traffic control and performance evaluation of ATM networks

    Get PDF
    The emerging high-speed Asynchronous Transfer Mode (ATM) networks are expected to integrate through statistical multiplexing large numbers of traffic sources having a broad range of statistical characteristics and different Quality of Service (QOS) requirements. To achieve high utilisation of network resources while maintaining the QOS, efficient traffic management strategies have to be developed. This thesis considers the problem of traffic control for ATM networks. The thesis studies the application of neural networks to various ATM traffic control issues such as feedback congestion control, traffic characterization, bandwidth estimation, and Call Admission Control (CAC). A novel adaptive congestion control approach based on a neural network that uses reinforcement learning is developed. It is shown that the neural controller is very effective in providing general QOS control. A Finite Impulse Response (FIR) neural network is proposed to adaptively predict the traffic arrival process by learning the relationship between the past and future traffic variations. On the basis of this prediction, a feedback flow control scheme at input access nodes of the network is presented. Simulation results demonstrate significant performance improvement over conventional control mechanisms. In addition, an accurate yet computationally efficient approach to effective bandwidth estimation for multiplexed connections is investigated. In this method, a feed forward neural network is employed to model the nonlinear relationship between the effective bandwidth and the traffic situations and a QOS measure. Applications of this approach to admission control, bandwidth allocation and dynamic routing are also discussed. A detailed investigation has indicated that CAC schemes based on effective bandwidth approximation can be very conservative and prevent optimal use of network resources. A modified effective bandwidth CAC approach is therefore proposed to overcome the drawback of conventional methods. Considering statistical multiplexing between traffic sources, we directly calculate the effective bandwidth of the aggregate traffic which is modelled by a two-state Markov modulated Poisson process via matching four important statistics. We use the theory of large deviations to provide a unified description of effective bandwidths for various traffic sources and the associated ATM multiplexer queueing performance approximations, illustrating their strengths and limitations. In addition, a more accurate estimation method for ATM QOS parameters based on the Bahadur-Rao theorem is proposed, which is a refinement of the original effective bandwidth approximation and can lead to higher link utilisation

    Bandwidth allocation in ATM networks: heuristic approach

    Get PDF
    科研èČ»ć ±ć‘Šæ›žćŽéŒČ論文(èȘČ題ç•Șć·:09680388・ćŸș盀研究(C)(2)・H9H10/ç ”ç©¶ä»ŁèĄšè€…:æ č慃, 矩章/æƒ…ć ±ăƒ•ă‚Łăƒ«ă‚żăƒȘăƒłă‚°ă‚’ç”šă„ăŸć€§èŠæšĄæƒ…ć ±ăƒăƒƒăƒˆăƒŻăƒŒă‚ŻăźăƒȘă‚ąăƒ«ă‚żă‚€ăƒ éšœćźłæ€œć‡șæ–čćŒ

    Cross-layer RaCM design for vertically integrated wireless networks

    Get PDF
    Includes bibliographical references (p. 70-74).Wireless local and metropolitan area network (WLAN/WMAN) technologies, more specifically IEEE 802.11 (or wireless fidelity, WiFi) and IEEE 802.16 (or wireless interoperability for microwave access, WiMAX), are well-suited to enterprise networking since wireless offers the advantages of rapid deployment in places that are difficult to wire. However, these networking standards are relatively young with respect to their traditional mature high-speed low-latency fixed-line networking counterparts. It is more challenging for the network provider to supply the necessary quality of service (QoS) to support the variety of existing multimedia services over wireless technology. Wireless communication is also unreliable in nature, making the provisioning of agreed QoS even more challenging. Considering the advantages and disadvantages, wireless networks prove well-suited to connecting rural areas to the Internet or as a networking solution for areas that are difficult to wire. The focus of this study specifically pertains to IEEE 802.16 and the part it plays in an IEEE vertically integrated wireless Internet (WIN): IEEE 802.16 is a wireless broadband backhaul technology, capable of connecting local area networks (LANs), wireless or fixed-line, to the Internet via a high-speed fixed-line link

    Performance modeling and control of web servers

    Get PDF
    This thesis deals with the task of modeling a web server and designing a mechanism that can prevent the web server from being overloaded. Four papers are presented. The ïŹrst paper gives an M/G/1/K processor sharing model of a single web server. The model is validated against measurements ands imulations on the commonly usedw eb server Apache. A description is given on how to calculate the necessary parameters in the model. The second paper introduces an admission control mechanism for the Apache web server basedon a combination of queuing theory andcon trol theory. The admission control mechanism is tested in the laboratory, implemented as a stand-alone application in front of the web server. The third paper continues the work from the secondp aper by discussing stability. This time, the admission control mechanism is implemented as a module within the Apache source code. Experiments show the stability and settling time of the controller. Finally, the fourth paper investigates the concept of service level agreements for a web site. The agreements allow a maximum response time anda minimal throughput to be set. The requests are sorted into classes, where each class is assigneda weight (representing the income for the web site owner). Then an optimization algorithm is appliedso that the total proïŹt for the web site during overload is maximized
    • 

    corecore